
User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Copyright

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2007 by Andy Wigley, Daniel Moth, and Peter Foot

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2007924652

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 2 1 0 9 8 7

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International
directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to
mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, ActiveSync, ActiveX, Authenticode, Direct3D, DirectDraw, DirectX,
Excel, IntelliSense, Internet Explorer, MSDN, MS-DOS, Outlook, SQL Server, Visual Basic, Visual C#, Visual C++,
Visual Studio, Win32, Windows, Windows CardSpace, Windows Media, Windows Mobile, Windows NT, Windows
Server, Windows Vista, Xbox, Xbox 360, and XNA are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other product and company names mentioned herein
may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author's views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by this
book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Lynn Finnel
Editorial and Production Services: Waypoint Press
Copy editor: Christina Palaia
Technical Reviewer: Danial Hughes

Body Part No. X13-68393

Dedication

For Stephanie, thanks for your support and tolerance while I was writing this book (and
for putting up with the awful jokes).

—Peter Foot

To the two people in my life who have shaped and are still shaping who I am: my mother,
Rita, and my wife, Jenny.

—Daniel Moth

For my mother, Margaret. Thank you, Mags, for being such a caring, loving person.

—Andy Wigley

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Foreword

Is the era of the desktop computer drawing to a close? PCs may remain the focus of computing in the office and
the home for a long time to come, but increasingly we find ourselves away from our homes and offices, yet still
demanding information at our fingertips. The computing world is in the midst of a transition in which mobile
devices are emerging as the world's dominant computing platform. In 2006, approximately 1 billion cell phones
were sold worldwide-more than the total installed base of desktop computers. The fastest-growing segment of
this exploding cell phone market is high-end Smartphones.

And smartphones are only part of the picture. We use computers of all kinds when we listen to our portable
music players, drive our cars, work out on our treadmills, or play games on our handheld game players. All these
computers start out simple, but little by little they evolve into full-blown computing platforms, connected to the
Internet, and ready to run more complex and sophisticated software.

The Microsoft .NET Compact Framework was designed exactly for this mobile device revolution. Developers may
want to run their software on ever physically smaller and more mobile devices, but they deserve the same
first-class runtime platform and development environment that they know and use for their nonmobile software
projects. They shouldn't have to relearn a different set of skills, languages, tools, and methodologies to run on
these new devices-they should be able to capitalize on the skills, knowledge, and experiences they already have.

This book is a practical guide to developing applications for the .NET Compact Framework running on Microsoft
Windows CE- and Windows Mobile-powered mobile devices. The authors, Andy Wigley, Daniel Moth, and Peter
Foot, are veteran Microsoft Most Valuable Professionals (MVPs) who have worked with the .NET Compact
Framework since its earliest prerelease versions. (Daniel is an ex-MVP who is currently employed by Microsoft.)
In their roles as MVPs, they have translated their first-hand experiences developing software for .NET Compact
Framework-based projects into requirements and feedback that have been incorporated directly into newer
versions of the platform. In essence, they are part of a select community of experts who extend the eyes and
ears of the product team in Redmond directly to the front lines with developers like you.

This is one of the first books on the market that directly addresses version 2.0 of the .NET Compact Framework,
including the differences between version 1.0 and version 2. This is especially timely because at the time of this
writing retail Windows Mobile devices containing version 2.0 in ROM are just beginning to show up on shelves in
large volumes. The authors not only explain what the new features in version 2 are, but they provide
straightforward explanations of why the new features are useful, and how they can be effectively used to improve
your own mobile applications. The book also takes a first look at the forthcoming version 3.5 of the .NET Compact
Framework as well, providing an interesting preview of additional features and improvements that will arrive in
Microsoft Visual Studio Code Name "Orcas"-features such as compression, unit testing support, and compact
versions of Language Integrated Query (LINQ) and Windows Communication Foundation (WCF).

Although this book would be useful to anyone interested in writing applications for smart devices, it will be most
useful for the experienced desktop .NET developer who is interested in branching out to devices for the first time.
The advice contained in this volume doesn't get bogged down in theory or esoterica. Instead, it provides practical
guidelines and knowledge for writing efficient and functional mobile software. It is full of useful code samples
and examples that you can use to turbocharge your own device development. It doesn't assume that devices
exist in a vacuum, understanding instead that your application may be part of an overall architecture involving
desktop computers, servers, and so forth. And it addresses not just writing your application and getting it to
function correctly, but also performance and deployment of your applications-difficult areas that may surprise
developers new to the mobile environment.

The guys who wrote this book know what they're talking about. They are part of the vanguard leading the next
computing revolution: the mobile revolution. Take up the challenge of this revolution. Make your next software
project a mobile project based on the .NET Compact Framework!

Richard Greenberg

Group Program Manager

.NET Compact Framework Team

Microsoft Corporation

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Acknowledgments

Writing a book such as this is fun and immensely rewarding, but authors are a bit like long-distance
runners—they are perhaps a little unimaginative about how painful the experience is going to be and just how
long it takes. Nonetheless, having traveled along this long and occasional painful road, we, the authors, at least
have the pleasure of seeing the product of our labors published as a book. Our families and friends, though, have
suffered our absence through long hours of working and, although undoubtedly relieved that the project is over,
don't get quite as much satisfaction from the finished product as we do. So, the first people to thank are our
friends and families, for their love and support.

Second, a big thank you to Rob Miles. Although his name does not appear on the cover, he is one of the authors
of this book as well because he contributed Chapter 13 about programming advanced graphics with Microsoft
Direct3D Mobile.

Thanks to the excellent team at Microsoft Press—editor Lynn Finnel and copy editor Christina Palaia—and to the
editorial and production team at Waypoint Press. Thanks to our technical editor, Danial Hughes, who spent a lot
of time checking the accuracy of our words and our code. Thanks also to commissioning editor Ben Ryan, and
also to Tim Cooke of Content Master, both of whom kept the flame alive for this book during the many months
that this book was under consideration and we were waiting for the approval to get started.

We also enjoyed fantastic support from the other Device Application Development Most Valuable Professionals
(MVPs), who volunteered to review our chapters as we produced them. Thanks, then, to Nick Randolph, Maarten
Struys, Nino Benvenuti, Pete Vickers, Chris Muench, Jan Yeh, Alejandro Mezcua, Mark Arteaga, Ginny Caughey,
Rolf Hoepli, César Fong, and Alex Feinman. People from the product group and the MVP program at Microsoft
were also very supportive and went out of their way to answer technical queries, supply us with samples and
advice, and review our chapters. Thanks to Mike Fosmire, Steven Pratschner, Mark Prentice, Ilya Tumanov, Sergiy
Kuryata, Sriram Krishnan, Brian Cross, and Richard Greenberg.

Finally, thank you for reading this book. We hope you find plenty in it to help you create many great mobile
applications.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Introduction

Microsoft released .NET Compact Framework version 1.0 as part of the Microsoft Visual Studio .NET 2003 product
in April 2003. The .NET Compact Framework brings the benefits of managed code development to mobile devices
with a slimmed-down class library and an execution engine optimized for use on Microsoft Windows CE–based
operating systems. The .NET Compact Framework doesn't support the full feature set of the desktop framework,
but that is what you expect on a small, battery-powered device, and most mobile application developers agree
that version 1.0 was a great product. There were a few stand-out omissions though; in the .NET Compact
Framework team today, the term DateTimePicker has become a generic description for "any dumb decision to
leave out an essential feature," as in, "Is that a DateTimePicker feature?"

In November 2005, Visual Studio 2005 was released, and with it .NET Compact Framework version 2.0. This
major release adds many new features and implements features missing from version 1.0 that caused pain to
developers, including the aforementioned DateTimePicker control. Large enterprises built sophisticated
applications using .NET Compact Framework 1.0, but the improved feature set of this new release, coupled with
the increasing performance and widespread availability of devices from many different hardware vendors, make
the .NET Compact Framework more and more attractive as a platform for enterprise application development.

This book focuses on managed code development using .NET Compact Framework 2.0, which is supported on
Pocket PC devices running Windows Mobile 2003 and later, Smartphone devices running Windows Mobile 5.0 and
later, and custom hardware running Windows CE 4.2 and later. It also covers programming with managed
application programming interfaces (APIs) specific to different platforms, such as the Microsoft.WindowsMobile
APIs available under Windows Mobile 5.0. We also cover programming of Microsoft SQL Server 2005 Compact
Edition, which is the lightweight relational database that runs on devices and also on desktop computers.

If you are just starting out as a mobile application developer, welcome to a vibrant and exciting developer
community! A couple of years back, the microsoft.public.dotnet. compactframework newsgroup was the second
busiest of all .NET Framework newsgroups—busier even than microsoft.public.dotnet.framework! There are two
ways of interpreting that statistic of course: Either the level of activity showed how many people were building
.NET Compact Framework applications, or people were asking questions because they found it hard to use! The
truth is probably a bit of both, but hopefully this book will go some way to addressing the second reason.

Who This Book Is For

This book is for new and existing mobile application developers who already have some experience developing
applications using the .NET Framework (either desktop or compact version). If you are completely new to .NET,
we suggest you start with one of these books: Microsoft Visual C# 2005 Step By Step by John Sharp or Microsoft
Visual Basic 2005 Step By Step by Michael Halvorson, both published by Microsoft Press. Those books can teach
you the programming basics, and you will then be well prepared to use this book to unlock the secrets of mobile
application development.

If you are a developer with experience developing mobile applications using .NET Compact Framework 1.0 or
desktop applications using .NET Framework 1.x or 2.0, this book can help you develop mobile applications using
.NET Compact Framework 2.0 and will introduce you to some of the new features that are in .NET Compact
Framework version 3.5, which will be released with the next release of Visual Studio, currently code-named
"Orcas."

The predecessor to this book was Microsoft .NET Compact Framework Core Reference, which covered .NET
Compact Framework 1.0 development using Visual Studio .NET 2003. That book was a Core Reference that
explained pretty much every control and most basic programming techniques. At the time it was written, .NET
programming was still relatively little understood, particularly in the device application development community,
so the book did not assume much knowledge and included quite a lot of basic programming advice. However,
much of the programming advice it contains, and descriptions of programming specific Windows Forms controls,
are readily available online, at sites such as the Microsoft MSDN Web site (msdn.microsoft.com) or community
sites such as the CodeProject Web site (www.codeproject.com), not to mention numerous blogs and newsgroups.

This book is different from its predecessor in that it does not attempt to cover every control or language feature.
Along the way, the book does highlight features that are new to .NET Compact Framework 2.0 so that the
developer who has experience building applications using the version 1.0 product can identify new features that
can help build new applications. However, the main purpose of this book is to give you the essential information
you need to design and build great applications that work on a constrained device such as a Pocket PC or
Smartphone, or on embedded hardware. It tells you how to build and debug applications, how to design

graphical user interfaces (GUIs) that work on small devices, and how to deploy applications. It also delves into
problems that are unique to mobile device applications, such as how to design and build applications that work
well with unreliable, slow network connections, which is the usual state of affairs with phone-enabled mobile
devices. This book is a handbook for the mobile developer that explains how to tackle the common problems that
mobile application developers encounter.

How This Book Is Organized

The book is divided into three parts:

Part 1, Mobile Application Development Essentials, contains six chapters that everyone should read
because they take you through topics that all mobile application developers must understand.

Chapter 1, ".NET Compact Framework—a Platform on the Move," is an introduction to the .NET Compact
Framework and explains the tools you need to build applications for smart devices. Chapter 2, "Building a
Microsoft Windows Forms GUI," explains how to build effective Windows Forms applications on personal
digital assistants (PDAs) and Smartphones, and Chapter 3, "Using SQL Server 2005 Compact Edition and
Other Data Stores," extends this theme by looking at data persistence on devices in SQL Server 2005
Compact Edition databases and how you can build a graphical user interface that binds to data. In
Chapter 4, "Catching Errors, Testing, and Debugging," you'll learn how to test and debug your
applications on real devices and emulators, and how to trap and handle errors at run time. In Chapter 5,
"Understanding and Optimizing .NET Compact Framework Performance," you'll learn how to create
applications that perform well, something that requires a little more care to achieve on a smart device
with limited RAM and storage than it does in a desktop application. The final chapter in this section,
Chapter 6, "Completing the Application: Packaging and Deployment," looks at packaging and deployment
and how Visual Studio 2005 makes it easy to build installation packages so that you can install your
application on your target devices.

Part 2, Solutions for Challenges in Mobile Application Development, contains 10 chapters that examine
areas that present particular challenges to applications running on a smart device.

These include how to exchange data with a backend server and how to keep local copies of data you store
on a device synchronized with the master copy held on a server. Networking presents challenges because
mobile devices often are equipped with many different kinds of networking hardware, including universal
serial bus (USB) cable, WiFi, Bluetooth, and mobile phone network, but at times may have to operate in
an environment where none of these are usable. Two chapters examine the kinds of network programming
you can do and how you can get a usable network connection.

Chapter 10, "Security Programming for Mobile Applications," is about security programming, an essential
topic for any software developer, but of particular interest to mobile application developers who are
responsible for keeping valuable data secure on a mobile device that can be lost or stolen, and one that
must send data over public communications networks such as the Internet. Chapter 11, "Threading,"
looks at how to do multithreaded programming in the .NET Compact Framework, and this is followed by
two chapters on graphics programming. Chapter 14, "Interoperating with the Platform," explains how to
call native APIs that are available in the underlying Windows CE operating system to perform tasks that
are not possible using the .NET Compact Framework APIs alone. The following chapter looks at developing
custom Windows Forms controls that you can use in .NET Compact Framework applications, and the
chapter after that explains how to create applications that are easily localizable to different cultures and
languages. This section rounds up with a look at the Windows Mobile 5.0 managed APIs, a set of APIs that
are unique to mobile devices and that expose system information and allow programmatic access to data
stores such as Microsoft Office Outlook Mobile contacts, calendars, and tasks lists.

Part 3, New Developments, contains a single chapter that provides an early look at the next version of
Visual Studio and at the next version of the .NET Compact Framework, version 3.5. This new version,
which is in beta at the time of this writing, builds on top of the solid foundation laid by version 2.0 and
adds exciting new features for querying data collections, messaging, testing, and many other innovations
and enhancements.

System Requirements

You'll need the following hardware and software to build and run the code samples for this book:

The Windows Vista operating system, Microsoft Windows XP with Service Pack 2 (SP2), Microsoft Windows
Server 2003 with Service Pack 1 (SP1), or Microsoft Windows 2000 with Service Pack 4 (SP4).

Microsoft Visual Studio 2005 Standard Edition or higher.

Microsoft .NET Compact Framework Service Pack 1 or Service Pack 2. If you install Service Pack 1, make
sure you download and install the .NET Compact Framework 2.0 Service Pack 1 Patch to ensure that the
Compact Framework binaries that Visual Studio uses are updated. If you try to run the sample code with
Visual Studio 2005 without applying this update, you will get compilation errors.

If you are developing under Microsoft Windows XP, you also need:

Microsoft ActiveSync 4.0 or later.

If you are developing under Windows Vista, you also need:

Microsoft Windows Mobile Device Center Driver for Windows Vista.

Visual Studio 2005 SP1.

Visual Studio 2005 SP1 Update for Windows Vista.

Microsoft Device Emulator 2.0 or later. (Visual Studio 2005 ships with Device Emulator 1.0, which
does not work correctly on Windows Vista.) Note that you do not need to install Device Emulator
2.0 separately if you install one of the Windows Mobile 6 software development kits (SDKs)
because they install Device Emulator 2.0.

Microsoft Windows Mobile 5.0 SDK for Pocket PC and/or Microsoft Windows Mobile 6 Professional SDK.

Microsoft Windows Mobile 5.0 SDK for Smartphone and/or Microsoft Windows Mobile 6 Classic SDK.

Microsoft SQL Server 2005 Express (included with Visual Studio 2005) or Microsoft SQL Server 2005.

600-megahertz (MHz) Pentium or compatible processor (1-gigahertz [GHz] Pentium recommended).

For Microsoft Windows XP, 256 megabytes (MB) of RAM (512 MB or more recommended). For Windows
Vista, 512 MB of RAM (1 gigabyte [GB] or more recommended.

Video monitor (800 x 600 or higher resolution) with at least 256 colors (1024 x 768 High Color 16-bit
recommended).

Microsoft Mouse or compatible pointing device.

Configuring SQL Server 2005 Express Edition

Some chapters of this book require that you have access to SQL Server 2005 Express Edition (or SQL Server
2005). If you are using SQL Server 2005 Express Edition, follow these steps to grant access to the user account
that you will be using to perform the exercises in this book:

1. Log on to Windows on your computer by using an account with administrator credentials.

2. On the Start menu, click All Programs, click Accessories, and then click Command Prompt to open a

command prompt window.

3. In the command prompt window, type the following case-sensitive command:

sqlcmd –S YourServer\SQLExpress –E

Replace YourServer with the name of your computer.

You can find the name of your computer by running the hostname command in the command prompt

window before running the sqlcmd command.

4. At the 1> prompt, type the following command, including the brackets, and then press Enter:

sp_grantlogin [YourServer\UserName]

Replace YourServer with the name of your computer, and replace UserName with the name of the

user account you will be using.

5. At the 2> prompt, type the following command, and then press Enter:

go

If you see an error message, make sure that you have typed the sp_grantlogin command correctly,

including the brackets.

6. At the 1> prompt, type the following command, including the brackets, and then press Enter:

sp_addsrvrolemember [YourServer\UserName], dbcreator

7. At the 2> prompt, type the following command, and then press Enter:

go

If you see an error message, make sure that you have typed the sp_addsrvrolemember command

correctly, including the brackets.

8. At the 1> prompt, type the following command, and then press Enter:

exit

9. Close the command prompt window.

10. Log out of the administrator account.

Code Samples

The downloadable code includes projects for most chapters that cover the code samples and examples referenced
in the chapters. All the code samples discussed in this book can be downloaded from the book's companion
content page at the following address:

http://www.microsoft.com/mspress/companion/9780735623583/

Support for This Book

Every effort has been made to ensure the accuracy of this book and the companion content. As corrections or
changes are collected, they will be added to a Microsoft Knowledge Base article.

Microsoft Press provides support for books and companion content at the following Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or questions that are
not answered by visiting the site just mentioned, please send them to Microsoft Press by e-mail to

mspinput@microsoft.com

Or by postal mail to

Microsoft Press
Attn: Microsoft Mobile Development Handbook Editor
One Microsoft Way
Redmond, WA
98052-6399

Please note that Microsoft software product support is not offered through the above addresses.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Part I: The Essentials of Mobile Application Development

In this part:

Chapter 1: .NET Compact Framework—a Platform on the Move

Chapter 2: Building a Microsoft Windows Forms GUI

Chapter 3: Using SQL Server 2005 Compact Edition and Other Data Stores

Chapter 4: Catching Errors, Testing, and Debugging

Chapter 5: Understanding and Optimizing .NET Compact Framework
Performance

Chapter 6: Completing the Application: Packaging and Deployment

Chapter 1. .NET Compact Framework—a Platform on the Move

In this chapter:

Getting Started with Mobile Application Development in Visual Studio 3

Understanding the Differences Between the .NET Framework 2.0 and .NET Compact
Framework 2.0 20

Understanding the Differences Between .NET Compact Framework Version 1.0 and
Version 2.0 26

Introducing .NET Compact Framework version 3.5 31

Using Community Resources 33

Mobile device application developers work in a world where devices come in a wide variety of shapes and sizes,
and with different capabilities, and so the first chapter of this book sets the scene by describing the different
Microsoft Windows–powered mobile device platforms. It also explains the major programming differences
between the full Microsoft .NET Framework used on desktop and laptop computers and the .NET Compact
Framework used on devices. This chapter also summarizes the differences between version 1.0 and version 2.0 of
the .NET Compact Framework.

The first section is primarily for developers who are new to developing applications for mobile devices. You'll
learn about the mobile device platform choices, the different versions of the .NET Compact Framework, and the
development tools you may require. This chapter summarizes the new features in .NET Compact Framework
versions 2.0 and 3.5. The chapter ends by looking at some of the community resources that are available to
augment the Microsoft-supplied tools, many of which have proved essential for .NET Compact Framework
developers.

Getting Started with Mobile Application Development in Visual

Studio

If you are creating your very first mobile device application, straightaway you must know the answers to some

questions that may be confusing to developers new to the field:

Which version of the Microsoft Visual Studio development system do you need?

Which platform should you target: Pocket PC, Smartphone, or Microsoft Windows CE?

What are the differences between these platforms?

Which version of .NET Compact Framework should you use?

Choosing the Version of Visual Studio

The majority of mobile application developers use Visual Studio as their preferred integrated development
environment (IDE). Different versions of Visual Studio are available, and you can install multiple versions side by
side on your development computer. Each version of Visual Studio supports development of .NET Compact
Framework applications, though the set of supported target devices differs, as explained in Table 1-1.

Table 1-1. Visual Studio Versions

Visual Studio Version Supported Platforms

Visual Studio .NET 2003 .NET Compact Framework 1.0 development on Pocket PC
2002 and Windows Mobile 2003–based devices, and
embedded devices running Windows CE 4.1 or 4.2.

.NET Compact Framework 1.0 Service Pack 1 (SP1) adds
support for phone devices running Windows Mobile 2003
for smartphones.

Microsoft Visual Studio 2005
Standard Edition or later

.NET Compact Framework 1.0 and 2.0 applications running
on:

Windows Mobile 2003–powered Pocket PCs and

Smartphones (but note that only .NET Compact

Framework 1.0 is supported on the Windows

Mobile 2003–powered Smartphone)

Windows Mobile 5.0–powered Pocket PCs and

Smartphones

Windows Mobile 6.0–powered Pocket PCs and

Smartphones

Embedded devices running Windows CE 5.0

Embedded devices running Windows CE 6.0

Visual Studio v.Next
(code-named Orcas)

The next version of Visual Studio will support development
of .NET Compact Framework 2.0 applications for devices
running Windows Mobile 5.0 and later and for embedded
hardware running Windows CE 5.0 or later.

It also will support development of .NET Compact
Framework 3.5 applications.

Note

.NET Compact Framework 2.0 SP1 is supported on Windows CE 4.2, but Visual
Studio 2005 does not support building applications targeting Windows CE 4.2. You
must build your application for Windows CE 5.0 and then deploy to your Windows
CE 4.2–powered device.

This book is primarily about development of .NET Compact Framework 2.0 applications. However, we mention
version 3.5 of the framework in Table 1-1, and some of you may be wondering what happened to .NET Compact
Framework 3.0. In fact, it never existed. The .NET Compact Framework product team maintains version
numbering in sync with the desktop framework. Version 3.0 of the desktop .NET Framework was actually .NET
Framework 2.0 with the addition of the first release of Windows Communication Foundation, Windows
Presentation Foundation, Windows Workflow Foundation, and Windows Cardspace. There was no comparable
release of the .NET Compact Framework. The version of the desktop .NET Framework that ships with Microsoft
Visual Studio 2007 is 3.5, and the version of the .NET Compact Framework that ships with Visual Studio 2007 is
also 3.5.

In this book, we use Visual Studio 2005 because with it you can create applications for devices that run the
Windows Mobile 5.0, the Windows Mobile 6.0, or the older Windows Mobile 2003 operating system, and also for
devices that run Windows CE 5.0 and Windows Embedded CE 6.0—which covers the majority of devices that are
available today. You can create applications to run on either .NET Compact Framework 1.0 or 2.0 runtime, and so
Visual Studio 2005 supports the broadest choice of platforms and runtimes.

Other Development Software You Need

Out of the box, Visual Studio 2005 does not support development of applications for Pocket PCs or Smartphones
running Windows Mobile 5.0 or later. For that, you must download and install the following additional software:

Windows Mobile 5.0 SDK for Pocket PC

Windows Mobile 5.0 SDK for Smartphone

The Windows Mobile 5.0 SDKs contain documentation, samples, and software libraries for these platforms. They
also install device emulators on your development computer that runs the Windows Mobile 5.0 operating system,
and you can use these during development in Visual Studio 2005.

Developing .NET Compact Framework applications without using Visual Studio

It is not mandatory to use Visual Studio as your IDE because .NET Compact Framework 2.0 has its
own software development kit (SDK) that supplies all the command-line tools and libraries you
need to build and compile applications—something that was not available in version 1.0. The .NET
Compact Framework SDK is not available separate from the framework, but instead it is included in
the .NET Framework 2.0 SDK. The .NET Framework SDK includes documentation, sample code,
tools, and reference assemblies that you can use to develop code that targets the .NET Compact
Framework. To install the tools and assemblies you need for .NET Compact Framework
development, install NETCFSetUpV2.msi, located in the CompactFramework subdirectory in the
.NET Framework 2.0 SDK.

In addition to the .NET Framework 2.0 SDK, you must download the following products from the
Microsoft MSDN Web site at msdn.microsoft.com/netframework/downloads:

.NET Compact Framework 2.0 Redistributable

Optionally, the standalone Device Emulator

Microsoft SQL Server 2005 Compact Edition SDK if you plan to develop applications using
this database

After you have these components installed, you have all the basic tools you require. You can then
install an alternate IDE to help with application development (or indeed, you can write your
applications in Notepad and compile them from the command line if you are that peculiar breed of
developer who loves to do things the hard way). One IDE you can use is SharpDevelop, which you
can download for free from the SharpDevelop Web site at http://www.sharpdevelop.net. You can
find instructions on how to develop .NET Compact Framework 2.0 applications using SharpDevelop
on the company's Wiki site at http://wiki.sharpdevelop.net/default.aspx
/SharpDevelop.CompactFramework2Development.

If your development computer is running versions of Windows other than the Windows Vista operating system,
you must also download Microsoft ActiveSync version 4.0 or later, which is required to manage connectivity and
data synchronization between a mobile device and your development computer. Windows Vista has the basic
connectivity capabilities built in that you require for software development on mobile devices..

If you are developing on Windows Vista, you should download and install Microsoft Windows Mobile Device
Center Driver for Windows Vista from www.microsoft.com/downloads, along with the following updates:

Visual Studio 2005 SP1

Visual Studio 2005 SP1 Update for Windows Vista

Microsoft Device Emulator 2.0 or later (Visual Studio 2005 ships with Device Emulator 1.0, which does not
work correctly on Windows Vista). Note that you do not need to install Device Emulator 2.0 if you inst5all
one of the Windows Mobile 6 SDKs.

If you want to develop applications for Windows Mobile 6.0–powered devices, download a Windows Mobile 6.0
SDK that contains documentation, tools, and new emulators that run Windows Mobile 6.0 that you can use
during development. Note that Microsoft has changed the way different editions of the SDK are named, as
follows:

Windows Mobile 6 Standard This SDK is for devices that do not have a touch screen, those devices that
were referred to in Windows Mobile 5.0 as Smartphones. You must download the Windows Mobile 6
Standard SDK to develop for these devices.

Windows Mobile 6 Classic This SDK is for devices that have a touch-sensitive screen but no phone

capabilities; these devices were formerly known as Pocket PCs. Use the Windows Mobile 6 Professional
SDK to develop for these devices.

Windows Mobile 6 Professional These are high-end devices with a touch screen and phone capabilities
formerly known as Pocket PC Phone Edition. As with Windows Mobile 6 Classic, you use the Windows
Mobile 6 Professional SDK to develop for these devices.

Visual Studio 2005 includes support for developing applications for targets running Windows CE 5.0. If you want
to develop applications for devices running Windows Embedded CE 6.0, you must download the Windows
Embedded CE 6.0 SDK.

You can download these components from the Microsoft Download Center Web site at http://www.microsoft.com
/downloads/Browse.aspx?displaylang=en&categoryid=8.

Choosing Your Platform: Pocket PC, Smartphone, or Windows CE?

There are three broad categories of mobile platform: Pocket PCs (which run Windows Mobile), Smartphones
(which also run Windows Mobile, although a version specific to smartphones), and embedded or custom
hardware (which runs Windows CE). The key differences between these platforms are illustrated in Table 1-2.

Table 1-2. Key Physical Differences Between Mobile Platforms

Platform

Pocket PC/Windows
Mobile 6 Classic and
Professional

Smartphone/Windows
Mobile 6 Standard Windows CE

Touch-sensitive
screen

Yes No Custom: Decision of
device original
equipment manufacturer
(OEM)

Keypad No keyboard, or QWERTY
keyboard

Phone triple-tap keys, or
QWERTY keyboard

Custom: Decision of
OEM

Telephone
capability

Yes if Pocket PC Phone
Edition or Windows
Mobile 6 Professional;
otherwise, no

Yes Custom

Operating
system

Windows Mobile 2003
for Pocket PC Premium
Edition

Windows Mobile 2003
for Pocket PC
Professional Edition

Windows Mobile 2003
for Pocket PC Phone
Edition

Windows Mobile 5 for
Pocket PC

Windows Mobile 6
Classic

Windows Mobile 6
Professional

Windows Mobile 2003
for Smartphone

Windows Mobile 5 for
Smartphone

Windows Mobile 6
Standard

Windows CE 4.2

Windows CE 5.0

Windows Embedded CE
6.0

As Table 1-2 shows, Pocket PCs always have touch-sensitive screens and may or may not have a keyboard.
Smartphones have non-touch-sensitive screens and usually include a phone keypad, although occasionally a full
QWERTY keyboard is included. Windows CE–based devices can have any kind of screen (or no screen at all in the
case of headless devices) and keyboard because they are custom embedded hardware.

As shown in Figure 1-1, in the New Project dialog box, Visual Studio 2005 offers different project types that
correspond to these categories. You may see different platform versions for Pocket PCs, smartphones, or Windows
CE (for example, Figure 1-1 shows the version for Windows Mobile 2003 and Windows Mobile 5.0 options for
Pocket PCs and Smartphones), but they still fall under the three categories mentioned.

Figure 1-1. Visual Studio 2005 New Project dialog box, which divides mobile platforms into

three categories

[View full size image]

Important

When you first install Visual Studio 2005, you will not see Windows Mobile 5.0 or
Windows Mobile 6.0 platforms in the list of project types. To target these platforms,
you must install additional software, as described earlier in this chapter in the
section titled "Other Development Software You Need."

Choose the project type that matches the hardware on which your application will run, and then choose which
kind of project you want to build.

The Difference Between Windows CE and Windows Mobile

Not understanding the difference between Windows CE and Windows Mobile often causes great confusion among
new mobile developers. Are Windows Mobile and Windows CE simply different mobile device operating systems?
Actually, that is quite a good way of thinking of it, although many people do not understand how closely they are
related.

The Windows CE Operating System

Windows CE is an operating system. However, it is a modular operating system that is intended to be completely
adaptable to its intended use—a kind of tool kit that device makers use for building customized operating system
images for a variety of nondesktop devices. Embedded developers can use an application called Platform Builder
to pick exactly which modules of Windows CE they want to build into their operating system. They then generate
their custom operating system image and install it on custom hardware.

Some Windows CE modules include essential functionality that is required in all Windows CE–based operating
systems, but many modules are optional, including the .NET Compact Framework runtime. Therefore, there is no
one definitive version of Windows CE; every Windows CE operating system is simply a collection of whichever
modules the designer decided to include. Microsoft has renamed the most recent version of Windows CE as
Windows Embedded CE 6.0, to emphasize its intended use.

Note

With the release of Windows Embedded CE 6.0, the Platform Builder functionality
no longer operates as a separate product but instead integrates with Visual Studio
2005 as a plug-in.

We don't discuss how to use Platform Builder in this book. For more information about Platform Builder, visit the

Microsoft Windows Embedded Developer Center Web site at http://msdn.microsoft.com/embedded/default.aspx.

Windows Mobile Operating Software

Windows Mobile is the operating environment for Pocket PCs and smartphones. Consumers and enterprise
customers who require a stable platform on which to run their software use these devices. The platform
customizability that is possible with Windows CE implementations—such as one that has networking and another
that doesn't—is of no use to these customers. They need consistency between devices and clear upgrade paths
from one version release to the next.

Consequently, device manufacturers who design and build Windows Mobile–powered devices do so within the
terms of a license agreement with Microsoft that dictates the basic hardware functionality of the device and the
software that is included in the basic package (although the manufacturer may add software). This is so that
software that runs on one manufacturer's device also runs on a different manufacturer's device. The user finds
the same kinds of buttons available, similar screen dimensions, and a consistent way of using the device.

Some years ago, the license terms were very restrictive so that all Pocket PC devices had a 240 x 320 pixel
screen, portrait orientation, and no keyboard. This standardization was great for developers because they knew
the exact characteristics of the target devices, regardless of manufacturer. Today the license restrictions are
much less restrictive. Square, landscape, and high-resolution screens are common, as are keyboards on Pocket
PCs, all of which offer great selections for users but add challenges for software developers who must build a
graphical user interface (GUI) to run on multiple devices.

The Windows Mobile product group at Microsoft is a customer of the Windows CE group. Windows Mobile is built
on Windows CE. The Windows Mobile group uses Platform Builder to build a particular implementation of
Windows CE using the modules they require, and then they add their own software, such as the Pocket PC or
Smartphone shell (a shell is a set of user interface components and underlying support routines that translate
user input into useful operating system actions), plus standard add-on software such as Microsoft Internet
Explorer Mobile, Word Mobile, Excel Mobile, and so on. Windows Mobile 2003 was built on Windows CE version
4.2; Windows Mobile 5.0 and Windows Mobile 6.0 both are built on Windows CE 5.0.

Choosing Between Windows Mobile and Windows CE

If it is your job to select the platform to use on devices for a new project, you may be confused about which one
you want. The choice is relatively simple. If you are writing applications for a device with telephone capability
that does not have a stylus and that can be operated one-handed from the keypad, Smartphone (or, to use the
modern terminology, Windows Mobile 6 Standard) is the correct choice. If you are writing for custom hardware,
obviously you must use Windows CE.

The choice between using Pocket PC (now called Windows Mobile 6 Classic or Professional) and Windows CE can
be a little more complicated. Most of the large enterprise mobile device manufacturers, such as Intermec and
Symbol, offer Pocket PC–style devices that come with a choice of Windows Mobile or Windows CE running on
identical hardware. The implementation of Windows CE used on these devices usually uses the standard
graphical Windows-style shell (one of the components included in Platform Builder) so that devices from different
manufacturers tend to give a similar user experience.

When you compare the way the standard Windows CE shell works to the way the Windows Mobile for Pocket PC
shell works, you see the obvious difference is in the screen layout and the way you start programs. On Pocket PC,
the Start button is at the top, and menus are displayed from the upper-left corner downward, as shown in Figure
1-2. To select a menu item, you tap once with the stylus. All applications running on a Pocket PC display objects
in full-screen mode (except for a very few types of pop-up dialog boxes).

Figure 1-2. On Pocket PC, the Start button at the upper-left

On Windows CE using the standard graphical shell, the screen layout is similar to a desktop computer that runs
the Windows operating system, as shown in Figure 1-3. The taskbar is along the bottom of the screen, and each
time you start an application its icon appears in the taskbar. The Start button is lower left, and the menus open
upward from the lower left. As on desktop computers, a single click or tap with the stylus selects a menu item.
To start a program from an icon displayed on the desktop, you must tap twice with the stylus (the equivalent of
a double click with a mouse). When an application runs, it does not necessarily run in full-screen mode. Also, in
Windows CE, application windows typically include the Close button (cross) and the Minimize button. On Pocket
PCs, you never see a Minimize button, and if there is a Close button, it actually works as a "Smart Minimize"
button and not a Close button. For more information about Smart Minimize, see the section titled "Closing a
Form" in Chapter 2, "Building a Microsoft Windows Forms GUI."

Figure 1-3. The Windows CE standard shell

Note

Remember that the Windows CE shell described here is only one of potentially
many options you may encounter if you develop applications for hardware that runs
Windows CE. A Windows CE–based platform can have its own unique shell that is
developed and customized for a device and its target audience, which supplies a
different user interaction experience from the one described here.

Smartphones supply yet another user experience. These devices do not have touch-sensitive screens, and they
are designed to be used one-handed. The primary navigation method is to use the five-way joystick, and you can
select items by using the two buttons under the screen. The convention is that the left button offers a single
option, such as OK, View, or Start, or whatever is the most likely user choice, whereas the right button offers a
menu of options. Figure 1-4 shows the smartphone interface in which the Home screen assigns Start to the left
button. When you activate the Start menu, it is displayed as a full screen of icons, as shown in the smartphone
interface on the right side of Figure 1-4. Applications are always displayed in full-screen mode on smartphones.

Figure 1-4. The five-way joystick and command buttons on a smartphone

You do not see buttons in the user interface (UI) of a smartphone application. In fact, there is no Button control
in the Visual Studio Toolbox for smartphone projects because a button is better suited to a touch-sensitive
screen where the user can tap the button to select that option, whereas on a smartphone screen the user would
be required to highlight an on-screen button by using the five-way controller and then press the center controller
button to select the on-screen button. This gives a poor user experience, and so buttons are not used. Instead,
you can use the left and right action buttons under the screen to give users buttonlike functionality.

Differences in device behavior affect programmers as well. Not only do you have a more limited selection of
controls to work with if you are developing applications for devices without a touch screen, but you will also find
that Windows Forms exhibit different basic behavior. For example, on devices running Windows Mobile, all forms
display full screen by default, whereas on devices running Windows CE, they do not. You learn more about these
differences and how to program Windows Forms on each of the platforms in Chapter 2.

The differences in shell behavior are not significant enough to influence your choice of platform greatly. In fact,
the usual reason developers choose Windows CE (apart from the obvious reason when a solution requires custom
hardware) is that it is easier to configure a Windows CE–powered device so that it runs only your application and
nothing else than it is to configure a device running Windows Mobile in such a way. For example, enterprise
managers like to lock down devices to prevent users from playing games, downloading additional software, or
pressing the hardware buttons to access built-in functions such as contacts and e-mail.

You can take steps to lock down a Windows Mobile–powered device, as described in Chapter 6, "Completing the
Application: Packaging and Deployment," but it is more difficult to achieve complete lockdown on a Windows
Mobile–powered device than it is on a Windows CE–based device. On a Windows Mobile–powered device, you
must always use (and try to control) the standard Windows Mobile shell, which is designed to be a user-friendly
interface to allow users to access all the capabilities of the device, whereas on a device running Windows CE, if
you don't like the behavior of the shell you have, you can fairly easily create a custom shell dedicated to running
your application.

Programming API Differences

If you have to choose between a device running Windows Mobile and a similar device running Windows CE, the
other factor you must consider is the availability of application programming interfaces (APIs) on each platform.
The most obvious difference is that on Windows Mobile 5.0 and later you have access to additional managed code
libraries that are not available on Windows CE; these libraries make it easier to interact with the platform. For
example, the Microsoft.WindowsMobile.Status namespace contains classes you use to query system status for
many different items, such as the current active network connection and Internet Protocol (IP) address, battery
power, screen orientation, phone status, media player information, or whether the device is cradled. You can also
register to receive notifications when a system status changes. Also, you can use classes in the
Microsoft.WindowsMobile.PocketOutlook namespace to query and set Microsoft Office Outlook Mobile data on
tasks, appointments, and e-mail. You can use other libraries to access hardware on the device such as the phone,
a Global Positioning System (GPS) receiver, or a camera. See Chapter 16, "The Windows Mobile 5 Managed
APIs," for more detail on these libraries.

Of course, whenever possible managed code developers call APIs only in managed libraries, but sooner or later,
every managed code application developer has to resort to Platform Invocation Services (PInvoke) calls to native
APIs to access functions that are available on the platform but not through managed APIs. Having a broad
understanding of features available in native APIs on Windows Mobile that are missing from Windows CE can
help you choose between platforms. To access a native API, you must use PInvoke to call functions in native APIs
(for more information, see Chapter 14, "Interoperating with the Platform") or use a third-party managed API,
such as the OpenNETCF managed wrappers (see the section titled "Using Community Resources" later in this
chapter for more information about the OpenNETCF) that effectively do all the hard PInvoke work for you.

There are too many differences in native APIs to describe them all here. To get an understanding of which native
APIs are available on Windows Mobile that are not in the underlying Windows CE platform, study the
documentation that comes with the Windows Mobile SDKs.

Choosing the .NET Compact Framework Version

We have established what the different device platforms are, and so the next question is which version of the
.NET Compact Framework should you choose to target? "The latest version" would seem to be the obvious
answer, but, as with many things concerning devices, it's not quite that simple! As the developer, you choose a
version of the .NET Compact Framework on which to build your application. If you choose version 1.0, you can be
reasonably confident that your application will run on all devices because versions 2.0 and later of the .NET
Compact Framework runtime run applications that were built to run on an earlier version. However, if you write
code that uses features only available in .NET Compact Framework 2.0, that version of the .NET Compact
Framework runtime must be installed on your target device for your application to operate.

The versions of the .NET Compact Framework runtime that are supported by the different mobile platforms are
illustrated in Figure 1-5. Note that the figure does not represent an accurate timeline for the release of the
different mobile platforms (for example, Windows CE 5.0 was released earlier than the Windows Mobile 5
operating systems) but is purely intended to illustrate run-time support.

Figure 1-5. Supported platforms for different .NET Compact Framework versions

[View full size image]

Microsoft does not manufacture mobile devices, but it does supply the software for such devices. As part of the
license agreement, device manufacturers that manufacture devices that use Windows Mobile software must
agree to preinstall the .NET Compact Framework runtime on all Windows Mobile–based smartphones and Pocket
PCs. However, because it takes quite a long time to design and release a new device, the availability of the
newest version of the runtime on devices in the marketplace lags behind the release of the software by Microsoft.

At the end of 2006, the majority of devices in use by consumers, including those running Windows Mobile 5.0,
had the .NET Compact Framework 1.0 SP3 runtime preinstalled, although it is becoming more common to see
version 2.0 on new devices coming to market. If a device has version 1.0 installed, you can install version 2.0
alongside it. However, if your application requires .NET Compact Framework 2.0 but the target user's device has
only version 1.0 installed, either the user must download and install the version 2.0 runtime prior to installing
your application or you must distribute the .NET Compact Framework 2.0 redistributable with your application.
See Chapter 6 for more information about this issue and how to resolve it.

Figures 1-6, 1-7, and 1-8 illustrate some typical configurations you will encounter with commercially available
devices. Figure 1-6 shows a typical Pocket PC device that has Windows Mobile 2003 Second Edition installed.
Typically, these devices either did not have .NET Compact Framework installed into read-only memory (ROM) or
had version 1.0 SP2 or SP3 factory installed into ROM (from where it is copied into random access memory [RAM]
by the operating system). You can install later versions of the .NET Compact Framework or the Microsoft SQL
Server runtime in RAM to run alongside any earlier version already on the device.

Figure 1-6. Typical configuration of a device running Windows Mobile 2003 Second Edition

[View full size image]

Figure 1-7. Typical configuration of a device running Windows Mobile 5.0

Figure 1-8. Typical configuration of a device running Windows Mobile 6.0

Figure 1-7 shows the typical configuration of a device running Windows Mobile 5.0. On such devices, generally
you will find that .NET Compact Framework 1.0 SP3 is preinstalled in ROM. Again, you can install version 2.0 of
the framework on the device alongside the preinstalled version.

Another change that sometimes trips up developers is in the handling of registry changes. The registry, too, is
persisted in flash memory, but because fast access to the registry is crucial to good system performance,
Windows Mobile maintains a RAM-based cache that is used for all registry operations. Whenever you make a
change to a setting in the registry, that change is applied to the RAM-based cache and is only flushed to the
persistent store periodically by the operating system. The Windows Mobile team put great effort into flushing
registry changes whenever necessary to avoid losing updates, but there are still some situations when you may
change the registry and then reset the device, losing the change. Developers can force a flush by calling the
RegFlushKey native API function.

On devices running Windows Mobile 6, you will find .NET Compact Framework 2.0 SP1 or later preinstalled into
ROM, as shown in Figure 1-8. You will also find the SQL Server 2005 Compact Edition runtime preinstalled so
that all the run-time components you need for the majority of your applications are already on the device. If you
want to use some future version of the .NET Compact Framework, such as version 3.5, you can install that
alongside the preinstalled versions in the same way as you can on devices that run earlier versions.

File store changes between Windows Mobile 2003 and Windows Mobile 5.0

The hardware of Pocket PC devices underwent substantial change with the move from Windows
Mobile 2003 to Windows Mobile 5.0, as illustrated in Figures 1-6 and 1-7. All devices have ROM to
store the factory-installed operating system and other preinstalled software, and to operate this

software is copied into RAM—the program memory—by the operating system. On devices that run
Windows Mobile 2003 and earlier versions, the file system, including the space where you store
application executables and files, is also stored in RAM so that the available RAM is divided between
the program memory and the file system. The dividing line between them is managed by the
operating system on Pocket PCs, although there is a Control Panel item you can use to move the
slider one way or the other to influence the space allocation. In Windows CE, the operating system
does not try to manage the division for you; you set it manually by using the Control Panel item or
programmatically.

In Windows Mobile 5.0 for Pocket PCs, the picture changes substantially. These devices have the
same ROM region for preinstalled software, and they have RAM for program memory to run the
operating system and applications. However, they also contain a region of flash memory where the
file system sits. No longer is there a Control Panel item or memory slider bar to use to allocate
memory use. (Note that Smartphone 2003 has used this model from the beginning.)

The major effect of adding flash memory is that at last you could run down the battery on a Pocket
PC device and not lose all your installed applications or data: flash memory does not require any
electrical current to retain the data written to it. The RAM-based file store on devices running
Windows Mobile 2003 requires a tiny trickle of current to maintain state, even when the device is
turned off. So when the battery runs out completely, the RAM-based file store is wiped and the user
must restore data and applications from backup or reinstall them. Enterprises have expended much
time reinstalling custom software and resetting registry settings on devices running Windows
Mobile 2003 to get them operational again after the battery has gone flat, but thanks to flash file
storage, this cost and effort are no longer required.

It is also worth mentioning that the flash-based file system has presented an unexpected challenge
to application developers. It takes more time to write to flash memory than it takes to write to
RAM, although it is still much faster than typical hard disk drives in desktop computers. If you have
code that writes to the file system a lot and it has worked acceptably on devices running Windows
Mobile 2003, you may experience performance problems using the same code on devices running
Windows Mobile 5.0. You may have to rewrite your code to do more caching before committing data
to a file. Built-in applications such as Word Mobile and the SQL Server 2005 Compact Edition
database have been optimized to work well with a flash-based file store, and you must take special
care to optimize your own applications as well.

Another unexpected effect of using a flash-based file store occurs when the store becomes full.
Flash memory wears out quickly if you keep writing to the same physical location in memory. To
prevent this from happening, the file system drivers continuously write to different locations in
memory and keep a logical map to track used blocks. As the flash memory fills, the drivers have to
work much harder to locate free memory, and so write performance degrades substantially
—sometimes as much as 70 times. To optimize flash memory performance, keep plenty of free
space in your file store.

Caution

Figures 1-6 through 1-8 show typical device configurations. The specific version of
.NET Compact Framework and/or SQL Server 2005 Compact Edition installed is up
to the device manufacturer, and so you may find variations.

If you are an enterprise developer, you are best advised to build your applications on .NET Compact Framework
2.0. More likely than not, you will have complete control over the configuration of your target devices so that you
would be foolish not to take advantage of the superior performance and functionality of version 2.0.

See the section titled "Understanding the Differences Between .NET Compact Framework Version 1.0 and Version
2.0" later in this chapter for more information about the new features introduced in .NET Compact Framework
2.0.

.NET Compact Framework Service Packs

Microsoft has released three service packs for .NET Compact Framework 1.0 and, at the time of this writing, two
service packs for version 2.0. You can install a service pack release alongside any earlier versions. For example, if
your device has .NET Compact Framework 2.0 installed in ROM, you can install version 2.0 SP2 alongside it. By
default, your applications will run using the version of the runtime they were compiled against or, if that version
is not installed on the device, a more recent version, although you can override this behavior at run time by
using configuration files. See Chapter 6 for more information.

On the whole, service packs fix bugs that have been discovered in the runtime or BCL, but Microsoft often uses
service packs as a vehicle for introducing (limited) new functionality. For example, version 2.0 SP1 fixes some
bugs but also widens support for more platforms and introduces some useful tools for developers, including the
following:

It introduces official support for running version 2.0 applications on Windows CE .NET 4.2.

It adds support for running .NET Compact Framework 2.0 applications on headless devices; that is,
custom Windows CE hardware that does not have a display monitor.

It introduces the Remote Performance Monitor tool that you can use to monitor application performance in
real time. See Chapter 4, "Catching Errors, Testing, and Debugging" for more information.

Version 2.0 SP1 also introduces a minor new programming feature: the ability to override the drawing of cells in
a DataGrid control to perform custom drawing. Obviously, if you take advantage of any new functionality such as
this in your application, you must take steps to ensure that the correct service pack or a later one is installed on
all your target devices.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Understanding the Differences Between the .NET Framework 2.0

and .NET Compact Framework 2.0

Quite often, we read forum posts from desktop developers who are trying development using the .NET Compact
Framework for the first time and who have discovered that some favorite class that they use in their desktop
.NET applications is not supported in the .NET Compact Framework Base Class Libraries (BCL). They express their
outrage at the perceived inadequacies of the mobile environment and express their astonishment that the .NET
Compact Framework is so "limited."

Actually, where it matters the .NET Compact Framework is not at all limited. Yes, many of the more specialist
classes may be missing, or you might have to program some piece of application functionality by using multiple
lines of code where the desktop framework provides a convenient method. But the essential classes, methods,
and properties are all there so that desktop and mobile developers can enjoy a consistent programming
experience and can transfer their skills fairly easily between the two frameworks.

The .NET Compact Framework is a compatible subset of the full .NET Framework. To suit the constrained nature
of the devices on which it operates, the .NET Compact Framework implements approximately 30 percent of the
classes and methods of the full framework. The full .NET Framework has a minimum footprint of around 40
megabytes (MB), which is clearly inappropriate for mobile devices that typically have storage capacity in the
range 32 MB to 128 MB. A mobile device is usually battery powered and has limited RAM (typically 64 MB).
Clearly, the .NET Compact Framework requires a special run-time engine to run well in this demanding
computing environment. In mobile computing as in all areas of computing, each year CPU power and storage
capacity increase, but in the mobile world the march of technological progress is always tempered by the
requirement of running the device on a battery for long periods of time. The size and functionality of the .NET
Compact Framework will also likely increase with each new release (the footprint increased from 1.5 MB to
around 4 MB in moving from version 1.0 to version 2.0), but device constraints will ensure that it remains a
subset of the full framework.

Classes are excluded from the .NET Compact Framework for two main reasons:

They expose Windows system services available on desktop versions of Windows but not in Windows CE.
For example, ASP.NET classes, which require Microsoft Internet Information Server (IIS) in the underlying
operating system services, are excluded from the .NET Compact Framework.

They are too large in footprint or too computationally expensive to implement, and alternatives exist. A
major design goal for the .NET Compact Framework is to keep the footprint as small as possible and to
limit demands on the CPU and hence battery power. Consequently, the .NET Compact Framework excludes
functionality such as Remoting and Extensible Stylesheet Language Transformations (XSLT).

Figure 1-9 shows a high-level overview of the namespaces in the full .NET Framework. Those that are not
included in the compact implementation are shaded.

Figure 1-9. The full .NET Framework namespaces and those that are absent from the .NET

Compact Framework

[View full size image]

In Figure 1-9, the presence of a namespace in both implementations does not mean that all the classes,
methods, enumerations, and interfaces are found in both. The .NET Compact Framework namespaces contain
fewer classes, and the classes that exist might not include exactly the same methods as the corresponding
classes in the full .NET Framework.

Tip

The quickest way to find out if a class or method you want to use is supported in
the .NET Compact Framework is to look up the class or method in the MSDN
documentation included with Visual Studio and also available online. The
documentation clearly states for which platforms the class or method is available; if
there is no mention of .NET Compact Framework 1.0 or 2.0, that class or method is
available only in the full .NET Framework.

The System.Net and System.Net.Sockets namespaces contain classes found only in the .NET Compact

Framework that enable infrared communication. The System.Data.SqlServerCE namespace does not ship in the
BCL of the .NET Compact Framework because it is implemented in supplementary libraries that come with the
SQL Server 2005 Compact Edition database. Not shown in Figure 1-8 are the Microsoft.WindowsMobile
namespaces that expose managed classes you can use to work with device-specific functionality on a Windows
Mobile 5.0–powered device, such as system state counters and Outlook Mobile tasks, contacts, and e-mail.
Although these are managed libraries for use by a .NET Compact Framework developer, they are additional
capabilities provided by the platform, not a part of the .NET Compact Framework itself.

Classes in the .NET Compact Framework with the same name as a class in the full .NET Framework are designed
to be semantically compatible with the corresponding full .NET Framework classes, ensuring that if a method or
class is present in both frameworks, the techniques to use that method and class remain the same. In fact, .NET
Compact Framework code is retargetable, meaning that you can take application code that has been built
referencing the .NET Compact Framework BCL and run it without modification on a computer that uses the full
.NET Framework—as long as you haven't called any methods that are specific to devices, such as those in the
Microsoft.WindowsMobile namespace. However, the reverse is not true: you cannot run code compiled against the
full .NET Framework on the .NET Compact Framework.

Application Configuration Files

In the full .NET Framework, the System.Configuration namespace contains classes that allow an application to
read and update settings stored in an Extensible Markup Language (XML) configuration file. Storing constants in
an external file rather than embedded in the code allows for easier reconfiguration later on. For example, a
typical usage might be to define a connection string to a database in the application configuration file. If the
assembly name is MyAssembly.exe, the configuration file name is MyAssembly.exe.config and is located in the
same directory as the assembly.

The .NET Compact Framework does not include built-in support for reading settings in configuration files.
However, the runtime will read a configuration file to look for directives to force applications that were compiled
against an older version of the .NET Compact Framework runtime to use a newer version if both are available on
the device. For example, if you have an application called AppA that was compiled against version 1.0 SP3 and
another called AppB compiled against version 2.0 SP1, by default each application executes using the version of
the runtime that they were compiled against, as long as both runtimes are installed on the device. If only the
later version of the runtime is installed, both applications would run using the version 2.0 SP1 runtime, which
should still work fine because each new release maintains backward compatibility with previous versions.
However, if both versions of the runtime are installed on the device, but you want to promote AppA to run using
the version 2.0 SP1 runtime (which you might do to take advantage of the superior performance compared with
version 1.0), you can do this by placing a configuration file called AppA.exe.config in the folder where the
application is deployed that contains the following, where each line represents the specific version number of
each successive release of the runtime, from version 1.0 at the bottom through 1.0 SP1, 1.0 SP2, 1.0 SP3,
version 2.0, 2.0 SP1, and 2.0 SP2:

<configuration>

 <startup>

 <supportedRuntime version="v2.0.7045"/>

 <supportedRuntime version="v2.0.6129"/>

 <supportedRuntime version="v2.0.5238"/>

 <supportedRuntime version="v1.0.4292"/>

 <supportedRuntime version="v1.0.3316"/>

 <supportedRuntime version="v1.0.3111"/>

 <supportedRuntime version="v1.0.2268"/>

 </startup>

</configuration>

If you want to use configuration files to store application settings in the same way as you do in desktop .NET
Framework applications, libraries are available in both the Mobile Client Software Factory and the OpenNETCF
Smart Device Framework; see the section titled "Using Community Resources" later in this chapter for more
information.

ClickOnce

With the full .NET Framework, you can publish Windows Forms applications to a server or network share. Clients
typically check for an update whenever they start, and you have the option of installing the application on the
client to allow for offline working, or you can configure the application to be online to the publisher at all times.
This brings the "deploy once, run on many clients" convenience of Web applications to Windows Forms.

ClickOnce is not supported on the .NET Compact Framework. See Chapter 6 to find out how to deploy
applications onto handheld devices.

Ngen.exe

Ngen.exe is a tool used with the desktop common language runtime (CLR) to precompile assemblies to native
code at installation time, also known as install-time just in time (JIT). This leads to faster startup time because
the Microsoft intermediate language (MSIL) does not need to be compiled to native code before running. The
option of precompiling to native code is not available in the .NET Compact Framework mainly because the size of
assemblies compiled to native code far exceeds the size of the same assembly in MSIL. In general, handheld

devices do not possess a large amount of storage for program files. Pocket PC devices do not have a physical
hard disk drive and must store all program code that is not preinstalled into ROM in virtual storage in RAM, which
is typically 32 MB or 64 MB, with some of that space required for program execution.

Remoting

The .NET Compact Framework does not support .NET Remoting. If you need to communicate with .NET
components situated on a remote computer, you should implement an XML Web Services façade for the
component and access it that way.

Serialization

Because of size and performance considerations, the .NET Compact Framework doesn't support the serialization
of objects using the BinaryFormatter or SoapFormatter class in the System.Runtime.Serialization namespace.
However, it does support the System.Xml.XmlSerializer class to serialize objects to and from XML.

Printing

Printing support is something that has been of interest only to a minority of handheld developers. Handheld
applications tend to be used for information retrieval and information gathering and rarely involve requirements
for printed output. However, a printed receipt to support a doorstep sale is one scenario in which printing can be
of value. Windows CE does not support printing, and so far, providing support for this functionality has been left
to third-party suppliers.

In the .NET Compact Framework, there is no support for printing from managed code. If you want to use an
infrared, Bluetooth, or serially connected printer from a managed application, third-party products are available
(for example, those from PrintBoy and Zebra) that include managed libraries to allow printing.

Web Forms

The System.Web namespace in the full .NET Framework contains all the ASP.NET classes (System.Web.UI.*), as
well as those classes that serve and consume XML Web Services. Serving Web content is not a common function
for handheld devices, and so this part of the .NET Framework is not implemented in the .NET Compact
Framework. Windows CE–based devices might act as a client for ASP.NET applications (or any other Web server
technology) by using the Pocket Internet Explorer browser bundled into the handheld package, but this does not
require the presence on the device of any additional run-time components such as the .NET Compact Framework.
On the Web server, you might use ASP.NET to develop Web applications targeted at Pocket Internet Explorer.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Understanding the Differences Between .NET Compact Framework

Version 1.0 and Version 2.0

If you are a mobile application developer who already has experience developing using .NET Compact Framework
1.0, you want to know what has changed with version 2.0. One of the most agreeable differences is that the
version 2.0 runtime is much faster than the version 1.0 runtime is. In 2005, at the Microsoft Mobile and
Embedded Developer Conference (MEDC) in Las Vegas, Richard Greenberg, group program manager for the .NET
Compact Framework at Microsoft, gave a presentation in which he described the performance gains achieved by
.NET Compact Framework 2.0. Some of the statistics he gave for a Pocket PC device with a 400-megahertz (MHz)
XScale processor running Windows Mobile 2003 are shown in Figures 1-10 and 1-11.

Figure 1-10. Performance improvements in method calls and garbage collection (larger is

better)

Figure 1-11. Performance improvements in data loading (smaller is better)

In addition to these raw performance gains, version 2.0 of the .NET Compact Framework contains many new
capabilities in the BCL. These improvements are designed to improve developer productivity, improve
compatibility with the full .NET Framework, and make it easier to use features specific to mobile devices.

The following sections provide a brief summary of all the new features of version 2.0. The chapters in the rest of
the book discuss these features in much more detail. You can also find a detailed description of all version 2.0
new features in the online Visual Studio 2005 documentation on the MSDN Web site at
http://msdn2.microsoft.com/en-us/library/ws1c3xeh.aspx. Also, a resource on the Internet at
http://compactframework2.net/compare lists the method changes right down at the API level.

Windows Forms

Many new controls are included in version 2.0. One major change is support for user controls. A user control is a
graphical component you can create in Visual Studio. After a user control is created, it is visible in the Toolbox
and can be dragged onto Windows Forms. In addition to user controls, .NET Compact Framework 2.0 supports
many new standard controls:

MonthCalendar The MonthCalendar control is a useful way for users to select dates.

DataGrid The DataGrid control is available in version 1.0, and the functionality has scarcely changed.
However, it is now supported on the Smartphone platform as well as on the other platforms.

DateTimePicker Another date selection control, but the DateTimePicker appears as a text box that the user
can edit directly, or the user can click an icon to display a MonthCalendar control to select the date.

DocumentList The DocumentList control is available only on Pocket PCs and provides a means for the user
to navigate the file system on the device and to perform actions on files, such as Open, Close, Rename,
Delete, and E-mail. It provides a user interface similar to the standard File dialog boxes included in
standard applications such as Word Mobile and Excel Mobile.

LinkLabel The LinkLabel control displays a link as a hyperlink. When clicked, it raises a Click event, similar
to a Button control.

Notification The Notification control is available only on the Pocket PC platform and provides a simple way
for developers to use the platform's Notifications feature. A pop-up message box appears and can be used
to convey information, but it can also include buttons and links to receive user input.

Splitter The Splitter control is used to divide a screen into different resizable areas. You can dock controls
in different areas, which can be a fixed size, or you can program the control to allow the user to resize an
area.

WebBrowser You can use the WebBrowser control to access the browser on the device from in your own
application.

Display and Layout Management

One of the more recent challenges that mobile application developers face is how to handle the
nonstandardization of device screen sizes and orientation. In the past, screen size and orientation were fixed so
that the developer could build the UI of applications to work on the standard screen size for a Pocket PC or a

smartphone (of course, Windows CE developers have never enjoyed that luxury).

Today devices come with square, portrait, or landscape screen orientation in different dimensions. Some devices,
such as the HTC TyTn, use portrait orientation until you pull out the retractable keyboard (which is hidden in the
side of the screen), whereupon the screen switches to landscape orientation. How does the developer create a UI
that can operate well on such a device?

Docking and Anchoring

.NET Compact Framework 2.0 supports docking and anchoring of controls to help developers lay out an adaptable
UI. You can dock a control against the edge of the parent control, such as a Form or Panel. The docked control
will lock itself to that edge of its parent, filling that edge. When the parent control is resized, the docked control
automatically resizes so that it always fills the specified edge of the parent control. Controls can also be docked
to fill the entire parent.

Anchoring is a similar feature. An anchored control is not in direct contact with the edge of its parent but instead
maintains a fixed distance from the edges of the parent to which it is anchored. When the parent control is
resized, the anchored control automatically resizes so that the anchored sides of the control remain the
appropriate distance from the corresponding edges of the parent control.

Automatic Scrollbars

If docking and anchoring are not sufficient to adapt your UI to work in different orientations, and you find some
controls are positioned off the visible area, you can at least get the runtime to add scrollbars automatically to
your display so that the user can move the visible area. To add scrollbars automatically, you can set the
AutoScroll property of the Form or Panel control to true.

Screen Resolution Handling

These days, mobile devices also come with different screen resolutions. For example, Pocket PCs always used to
have screens that were 320 x 240 pixels (QVGA), but today a number of devices are available that are 420 x 680
(VGA). If you have developed a UI for a Quarter VGA (QVGA) display, what will it look like on a Video Graphics
Adapter (VGA) display? The only way you really know is to test it, and Visual Studio provides you with both
QVGA and VGA emulators to help in that task.

From a programming point of view, you can set the AutoScrollMode property of container controls such as the
Form or Panel to AutoScrollMode.Dpi, which causes all child controls of the container to be scaled to match the
resolution of the display, even if a control was originally designed for a different resolution. You can also find out
at run time what the horizontal and vertical dots per inch of the current display are by querying the DpiX and
DpiY properties of the Graphics object.

Tab Support and Keyboard Management

Another main enhancement related to how a user interacts with your UI is support for keyboards, which are
becoming more common on devices. Controls on a form now have tab order (a feature that was actually added in
.NET Compact Framework 1.0 SP2) so that the user can use the Tab key to move between controls. Controls also
now receive KeyUp, KeyDown, KeyPress, and KeyPreview events. You can use the KeyPreview event to intercept
key presses, and if you like, set KeyPressEventArgs.Handled to true to prevent the key event from being sent to
the control.

Data

Database handling has received major improvements. The System.Data.SqlClient classes for accessing back-end
SQL Server databases have been enhanced to work with SQL Server 2005 databases, as have the remote data
access and merge replication functionalities. The System.Data.SqlServerCe classes for accessing databases on
the device work only with SQL Server 2005 Compact Edition (formerly called SQL Server 2005 Mobile Edition)
and not with SQL Server CE 2.0. SQL Server 2005 Everywhere Edition is a much faster, more reliable database
than SQL Server CE 2.0 is and includes many enhancements, such as support for more than one concurrent
connection. However, the best innovation is the SqlCeResultSet, which is a bit like an updatable data reader,
giving very fast query and update performance. You learn more about programming SQL Server 2005 Compact
Edition in Chapter 3, "Using SQL Server 2005 Compact Edition and Other Data Stores."

If you work with datasets, you can now call the GetChanges method to return only rows that have changed,
which is useful when you want to minimize network usage and send only data changes to a server.
Complementary to this is the Merge method that you can use to merge one dataset with another, for example, to
merge the changed rows back into a master dataset.

The DataBinding class is available to make binding easier between databound controls such as a DataGrid and a
data source such as an SqlCeResultSet, a DataSet, or a collection. The DataBinding class exposes methods to set
the current record position in the data source and exposes change events.

Communications

.NET Compact Framework 2.0 supports the SerialPort class that managed code developers can use to control
communications with devices over a serial port. It also supports Microsoft Message Queuing (MSMQ), which is a
great way of implementing reliable data message delivery to and from devices in a local area network (LAN) and
from devices to a server over the Internet. See Chapter 8, "Networking," for more information.

COM Interop

You can use COM interop in .NET Compact Framework 2.0 to use native Component Object Model (COM)
components from your managed code or create new COM components using managed code. See Chapter 14 for
more information about COM interop and other techniques for interoperating with native code.

Graphics Programming

If you do custom drawing in your applications, you will find new methods to manipulate bitmaps and to save
bitmaps to a file or stream. You can also draw text using the LogFont class, which supports drawing text at any
angle. Version 2.0 also supports custom pens for which you specify the color and the size. See Chapter 12,
"Graphics Programming," for more information.

For advanced graphics programming, .NET Compact Framework 2.0 includes support for the Microsoft Mobile
DirectX and Direct3D Mobile APIs. The former is supported on all platforms, whereas the latter is supported on
devices running Windows Mobile 5.0 or later. See Chapter 13, "Direct3D Mobile," for more information.

Security

.NET Compact Framework 1.0 does not support any managed classes to support encryption. Version 2.0,
however, provides extensive support for cryptography, including MD5 and SHA1 hashing; RC2, RC4, Triple DES
(3DES), Data Encryption Standard (DES), and Rijndael (as used in the U.S. Federal Government Advanced
Encryption Standard) symmetric encryption; and RSA asymmetric encryption.

.NET Compact Framework 2.0 supports NTLM and Kerberos authentication, as well as the digest authentication
also supported in version 1.0, for passing credentials to network resources that demand authentication. For more
information about cryptography and authentication, see Chapter 10, "Security Programming for Mobile
Applications."

Threading

Version 1.0 of the .NET Compact Framework provides limited support for multithreading programming but lacks
some essential features such as the ability to abort threads. All threads are foreground threads, which means
that you must be very careful to ensure that worker threads exit; otherwise, they prevent your application from
closing.

Multithreaded programming is always a programming activity that demands care, but the task is made easier in
version 2.0 with the capability to create threads as background threads. Background threads terminate when the
main program thread terminates. You can also use the Abort method to terminate threads, and you can block
waiting for a thread to exit by using the Join method.

Performance Monitoring

In version 1.0 of the .NET Compact Framework, it is difficult to diagnose performance problems because the only
diagnostic tool you can implement is to set a registry key to cause the runtime to accumulate limited statistical
data on internal counters and dump the data to a file when the application exits.

In version 2.0, the range of counters that are measured is greatly increased. Also, Service Pack 1 includes the
Remote Performance Monitor tool that you can use to monitor the counters in real time and even display the
results in Windows Performance Monitor on your development computer. To learn more about Remote
Performance Monitor, see Chapter 4.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Introducing .NET Compact Framework Version 3.5

This book is primarily focused on developing applications using .NET Compact Framework 2.0. However, at the
time of this writing, early versions of the next version, version 3.5, are available from the MSDN Downloads
Center as Community Tech Preview releases. Version 3.5 will be included in the next release of Visual Studio,
currently code-named Orcas.

Important

The following list describes features in the Community Tech Previews. There is no
guarantee that this feature list will be available in the final released product.

You can learn more about the new features and how to program them in Chapter 18, "A First Look at .NET
Compact Framework Version 3.5," but a summary follows:

Compact Windows Communication Foundation (WCF) This allows mobile devices to take part in
distributed applications that use WCF for reliable communications. The implementation is planned to
include a Hypertext Transfer Protocol (HTTP) transport for reliable networks, an implementation of
WS-Security for secure message transfer, and the ability to use e-mail as a message transport over
unreliable networks, using Microsoft Exchange Server 2007 for store and forward. This interesting
development promises to provide a solution to the problem of sending unsolicited messages to a mobile
device that is connected to a mobile operator's network, something that is very difficult to do today
because of the network architectures that are employed, which make it problematic to open a
Transmission Control Protocol/Internet Protocol (TCP/IP) connection to a device unless the device initiates
the connection in the first place. WCF using an e-mail message channel takes advantage of the push
e-mail capability that is a feature of Windows Mobile–powered devices connected to Exchange Server.

Compact Language Integrated Query (Linq) Linq is the name given to new query capabilities added to
the Microsoft Visual C# and Visual Basic languages to allow easier querying of collections. The
implementation of Linq in .NET Compact Framework 3.5 is a subset of the desktop .NET Framework
implementation and supports querying of datasets and XML, but not to a SQL Server or SQL Server
Compact Edition database.

Compatibility with Desktop .NET Framework Features A number of new features are
implementations of features available in the desktop .NET Framework, including the following:

SoundPlayer (plus added device mixing)

CreateGraphics support for custom drawing on TabPage, Panel, Splitter, and PictureBox controls

The ability to change the BackColor on read-only controls

Addition of SelectionStart and SelectionLength properties to the ComboBox

System.IO.Compression support in file input/output (I/O) and communication

Extending the PlatformID class to include enums for Smartphone and Pocket PC

New Tools The Remote Performance Monitor, which was first released as a standalone tool in .NET
Compact Framework 2.0 SP1, is now fully integrated into Visual Studio. There is also a new CLR Profiler
tool that will provide graphical displays of object allocations, histograms of live objects categorized by
age, and similar information about the memory management of the CLR.

Logging enhancements Enhancements are made to interop logging and to finalizer logging, including
logging of the order in which finalizers are run and the timing. Log files may be read at run time; they are
currently locked while the application is running.

Debugging enhancements The debugger will break in the correct location on unhandled exceptions
instead of always at Application.Run.

Apart from the new capabilities in the .NET Compact Framework runtime, Visual Studio Orcas also contains
version 3.0 of the Device Emulator, which brings many performance and functionality improvements over earlier
incarnations. Support for unit testing using Visual Studio Team System is also included.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Using Community Resources

Application development with the .NET Compact Framework presents two particular challenges:

The BCL contains only a subset of the functionality of the full .NET Framework. The product group at
Microsoft decided what to implement and what to leave out, and those choices have been, on the whole,
good ones. However, inevitably some functionality is missing that some developers may find useful.

Mobile development is challenging because of the demanding computing environment in which mobile
applications operate: network connections may be intermittent or unreliable, security is a prime concern
because of the risk of a device being lost or stolen, and, for the GUI developer, there are problems writing
a GUI that will work well on square, portrait, landscape, and/or high-resolution screens.

Members of the mobile developer community have been very supportive of each other in providing advice and
workarounds to meet these challenges, and online forums are well populated by Microsoft support personnel,
Microsoft Most Valuable Professionals (MVPs), and other experts. In particular, MSDN Forums where you can post
questions and search for answers exist to support application development for devices. You can find MSDN
Forums on the MSDN Web site at http://forums.microsoft.com/MSDN/default.aspx?ForumGroupID=11&SiteID=1.
Also, many newsgroups are listed on the Mobile Development Center Web site at http://msdn.microsoft.com
/mobility/community/newsgroups/default.aspx.

In addition to these community resources, two software libraries are available that have helped to address
mobile application development challenges and that have become valuable tools for the .NET Compact
Framework developer: The Microsoft patterns & practices Mobile Application Blocks and the OpenNETCF Smart
Device Framework.

Microsoft patterns & practices Mobile Application Blocks

The Mobile Application Blocks are part of a free software product from the Microsoft patterns & practices group
called the Mobile Client Software Factory. This encourages development of mobile applications using an asset
called the mobile Composite UI Application Block, or mobile CAB for short. The mobile CAB is quite difficult to
adopt and is intended for use by large enterprise software development departments, but the other application
blocks can be used in any .NET Compact Framework 2.0 application running on Windows Mobile 5.0 or later.

These application blocks include the disconnected service agent, which makes it easy to call Web services on a
device connected to an unreliable network; the Mobile Configuration Application Block, which implements
support for application configuration files; and the mobile Password Authentication Application Block, which
makes it easy to build solid password verification into your application and to encrypt and decrypt sensitive data
such as database connection strings or user names and passwords. You can use the Orientation-Aware control to
develop UIs that adapt automatically to changes in screen orientation. The Mobile Client Software Factory ships
with full source code so that you can modify and extend the blocks to suit your own needs.

We explain how to use some of the Mobile Application Blocks in later chapters. To download the Mobile Client
Software Factory, go to the patterns & practices Mobile Client Software Factory home page at
http://www.codeplex.com/smartclient.

OpenNETCF Smart Device Framework

The Smart Device Framework (SDF) was started as an open source project by a group of MVPs with the goal of
filling in the missing bits in .NET Compact Framework 1.0. Their libraries have evolved over time and now
implement many classes that are in the full framework that were missing from the .NET Compact Framework and
also include many useful additional libraries.

Best of all, version 1.x of the OpenNETCF SDF is free and shipped with full source code. There is no better
resource on how to build good class libraries, in particular how to use PInvoke to call Microsoft Win32 APIs! You
can still download the version 1.4 SDF source for free; see http://www.opennetcf.org for details. With the release
of version 2.0 of the SDF, the source code is no longer available for free. You can download the binaries of the
Smart Device Framework 2.0 Community Edition at http://www.opennetcf.org and browse the documentation,
but if you want the source code, unfortunately you must now pay for it.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

This chapter describes the mobile device platforms you may encounter as a mobile application developer, the
tools you will require to develop .NET Compact Framework applications, and an overview of the differences
between the full .NET Framework and the .NET Compact Framework.

We discussed the differences between .NET Compact Framework 1.0 and 2.0 and introduced version 3.5, and
finally we described some additional resources that are available to make the job of the mobile application
developer a little bit easier.

In the next chapter, we look at the process of mobile application development and explain how to build Windows
Forms applications on mobile devices.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 2. Building a Microsoft Windows Forms GUI

In this chapter:

Understanding Windows Forms Version 2.0 Enhancements 38

Using the Same Workflow as for Developing Desktop Applications 39

Mapping Device Screens to Device Forms 42

Exploring Important Windows Forms Controls 50

Handling Input 57

Considering the Physical Screen 61

Developing for Smartphones 69

Developing for Windows CE–Powered Devices 71

This and the next chapter explain how to build a Microsoft Windows Forms graphical user interface (GUI) for your
mobile application. In this chapter, you learn about handling and navigating forms, handling user input, working
with different screen orientations and resolutions, and the differences between the user interface (UI) on Pocket
PCs and Smartphones. In Chapter 3, "Using SQL Server 2005 Compact Edition and Other Data Stores," the focus
moves to how to bind controls to data sources.

Mobile devices come with the obvious constraint of a relatively small screen that can make it challenging to
design an effective UI. In addition, Pocket PCs and Smartphones differ in their user input capabilities: Typically,
Pocket PC applications must accommodate the on-screen keyboard (the software-based input panel, or SIP),
whereas input in Smartphones is usually through a phone keypad. However, you must be aware that devices
today are released in many different configurations; you may have to design your GUI to present a well-laid-out
GUI in both portrait and landscape orientations, or on screens using Video Graphics Adapter (VGA) or quarter
VGA (QVGA) resolutions. All these factors can make it more challenging to design a GUI for a mobile device than
it is to design one for a desktop computer.

In addition to studying the information in this book, we strongly encourage you to read the UI guidelines for the
Pocket PC and Smartphone platforms (links from here: msdn.microsoft.com/mobility/windowsmobile/partners
/mobile2market/participatevendors.aspx) and to study the behavior of built-in applications on your chosen target
platform.

One obvious UI design guideline for Pocket PC is to place near the bottom of the screen items that require the
user to tap so that when the user taps to make a selection, the user's hand does not obscure the screen. This is
why the tabs of the TabControl and the menus of the menu bar appear at the bottom of the screen.

Using the software-based input panel (SIP) is tedious for a user, and so you should always try to minimize the
amount of data a user must enter wherever possible. Besides text boxes, you can use alternative controls such as
combo boxes, check boxes, and radio buttons as applicable. If you must use text boxes, place them near the top
of the display so that when the SIP becomes visible, it does not obscure the text boxes.

Also, do not populate lists with hundreds of items. Not only will the user not scroll through that many items on a
device, but loading them all in a Listview or Listbox will negatively affect performance. Instead, consider
on-demand loading of items, alphabetical categorization, and other techniques you can use to limit the number
of items.

Again, a developer new to the platform should read the Microsoft Windows Mobile UI guidelines first.

Understanding Windows Forms Version 2.0 Enhancements

Most device applications include a GUI to present information to the user and accept input. In almost all modern
environments, including Microsoft Visual Studio 2005, GUIs are built by adding objects to a design surface. In
the Microsoft .NET Framework, the design surface is the form and the objects are Windows Forms controls.

The .NET Compact Framework version 2.0 Windows Forms controls include numerous enhancements. Some of

the changes are part of the overall version 2.0 full .NET Framework such as generics, and others were intended to
catch up with the functionality in the version 1.1 full .NET Framework, such as additional members in the Control
class.

Other changes mean that existing code with workarounds for version 1.0 functionality can now be removed. For
example, with .NET Compact Framework 1.0, adding a non–full screen TabControl to a form is not obvious; you
have to place it in a panel first and then position the panel according to your desired design layout. With .NET
Compact Framework 2.0, you can use the TabControl for absolute positioning as you see fit.

Only a few of the new features have been covered in this chapter and Chapter 1, ".NET Compact Framework—a
Platform on the Move." For a comprehensive list of new .NET Compact Framework 2.0 features, please visit the
Microsoft MSDN Web site at msdn2.microsoft.com/en-us/library/hyc18s6t.aspx.

Partial classes

When you create new forms in Visual Studio 2005 you may observe a new feature of .NET
Framework 2.0. Unlike in earlier versions of Visual Studio, in Visual Studio 2005 the code generated
when you add controls to a form in the design phase and when you tweak the appearance and
behavior of those controls in the Properties window resides in a separate code file named
<FormName>.Designer (for example, Form1.Designer.cs or Form1.Designer.vb). If you are using
C# to view the generated code file, you must expand the Form node in Solution Explorer. If you are
using Microsoft Visual Basic, first select Show All Files in Solution Explorer.

This split of designer-generated code from developer-written code is made possible by a new
feature named partial classes. You can use partial classes to define a class in multiple files by using
the same class name in multiple files and prefixing the class name with the new language keyword
partial. It is important to note that all of the related files of the same class must be included in the
same project because they are combined during compilation to represent a single class. A simple
example of this is to examine a form's code-behind in Visual Studio 2005 following the steps
described earlier to view the generated code file. Partial classes have even more uses in device
development combined with conditional compilation, as you'll see at the end of this chapter.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Using the Same Workflow as for Developing Desktop Applications

As you know, to create a Windows Forms application on the desktop, you start by selecting New Project on the
File menu. You create a new Smart Device project in the same way. After you expand the node that represents
your managed language of choice (C# or Visual Basic), you see the Smart Device node, which includes a wealth
of project templates. To create a Windows Forms GUI, choose the Device Application option under Windows
Mobile 5.0 Pocket PC, as shown in Figure 1-1 in Chapter 1. This dialog box will look familiar only if you've
installed the Windows Mobile 5.0 software development kit (SDK) as explained in Chapter 1.

Tip

In the next version of Visual Studio code-named Orcas, the Windows Mobile 5.0
SDKs will be part of the install. You may still need to install the SDK for Windows
Mobile 6.

To create a UI for a device application, follow the same basic process you use to create a UI for any desktop
application. The form design surface represents a screen, and you add controls from the Toolbox onto it. After
you add controls, you set their properties to customize their behavior and appearance. The last step is to handle
events from the controls to respond to user interaction. The event handlers are methods in code that you fill with
your business logic.

The obvious difference between building a UI for a device application and building one for a desktop application
is that for the former the form design surface actually looks like a device. You can turn this appearance on and off
by right-clicking the form and toggling the Show Skin option, as shown in Figure 2-1. You can set the default
behavior to show the skin or not when a form is opened by selecting Options on the Tools menu.

Figure 2-1. Show Skin option: with skin (and the context menu) on the left; without skin on the

right

[View full size image]

You can change the orientation and size of the skin by opening the form Properties dialog box and selecting an
alternative form factor, as shown in Figure 2-2.

Figure 2-2. FormFactor option for Windows Mobile 5.0 Pocket PC project

Another significant difference between Windows Forms application development for devices and desktop
computers is that the Toolbox of controls for Windows Forms is not as rich as is the one for desktop development.
Figure 2-3 shows the Toolbox for both Pocket PC and Smartphone controls.

Figure 2-3. Toolbox for Pocket PC (left) and Smartphone (right) device projects

As you can see, the controls that do not make sense to use on a device (for example, ToolTip, EventLog,
DirectorySearcher) or that may not offer enough value to justify their considerable footprint (for example, Error
Provider, TableLayoutPanel, or any of the Print controls) are not included in the Toolbox. Only a subset of the
desktop controls is available.

You can see a third difference between creating device projects compared with desktop projects when you press
F5 to run the project. For desktop projects, the application runs on the desktop, but for device projects, the
device application is deployed either to an emulator or to a real device, provided you have one available.

Tip

The Visual Studio 2005 emulators are great development tools. However, if you
have a real device on which to test and debug your applications, you may find that
you can deploy and debug your application more quickly than you can using an
emulator (depending on the specification of your development computer).
Remember that for Windows Mobile 5.0–powered devices, you need Microsoft
ActiveSync version 4.0 or later (or Windows Mobile Device Center on the Windows
Vista operating system).

For more deployment options, click the Tools menu and explore two of the options: the Connect To Device
submenu and the Device Emulator Manager submenu. Chapter 4, "Catching Errors, Testing, and Debugging,"
covers these tools in more depth. It is important to note that with Visual Studio 2005, the emulators are
Advanced RISC Machines (ARM) emulators that can provide a high-fidelity experience with machine code–level
emulation. You must use a real device to measure performance accurately, diagnose networking issues, and of
course perform final quality assurance (QA) testing (for example, using a stylus rather than a mouse), which is
paramount before shipping your application. After you open the emulator, explore the rich options by selecting
the File menu and then clicking Configure.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Mapping Device Screens to Device Forms

After you understand the mechanics and workflow of creating GUI projects, the next step is to understand the
behaviors and configurability of all the controls. The Microsoft MSDN Web site at msdn2.microsoft.com/en-
us/library/hf2k718k(VS.80).aspx provides copious amounts of information on controls, so we do not discuss
them in depth in this book. Rather, we highlight the most important controls later in this chapter. Now it is
essential to discuss some platform considerations and how they map to form properties.

Screen Layout

You can think of forms on devices as having three areas: a strip at the top, a strip at the bottom, and the main
area in between the strips, as shown in Figure 2-4.

Figure 2-4. A Pocket PC application annotated to emphasize the screen layout

[View full size image]

The top strip is for the application title/caption bar. The device also uses the top strip for such features as the
device start menu, clock, and signal indicators. The bottom strip is for the soft keys (menu/toolbar in devices
that use operating systems earlier than Windows Mobile 5.0) and also the SIP for Pocket PCs. The area in the
middle is where you design your main UI.

It is generally advisable that you do not alter this layout, but if you do want to hide the top or bottom strip, you
can. In Visual Studio, by default each form is given a MainMenu control. (In Windows Mobile 5.0 this is used for
the soft keys, and for devices that use earlier versions of Windows Mobile, it is used for menu and toolbar.) You
can delete the menu control from your form to hide the bottom strip. To hide the top strip, you must set the
WindowsState property of the form to Maximized (instead of its only other value, Normal).

Closing a Form

Now that you understand the screen layout, the next thing to realize about forms is that you have a main form,
and then there are all the other forms, that is, the nonmain forms. The main form is the one you passed to
Application.Run in your static Main method, which resides in the Program.cs file that Visual Studio generates for
you:

 static class Program
 {
 static void Main()

 {
 Application.Run(new Form1());
 }
 }

Note

By default, Visual Basic projects do not expose the static Main method. Instead, the
developer can set the main form for the project through the project Properties
dialog box. On the Application tab, select the form name in the Startup Object
combo box or, even better, select Sub Main. You then must add a Shared Sub Main
method to one of your classes (or to a new class). The benefit you gain is that you
can then cleanly add code before the form is shown; you will see that this is useful
later in this chapter when we talk about resolution awareness and in Chapter 4
when we talk about global exception handling. You can find an example of the
preceding steps in the code samples for Chapters 2 and 4.

When the main form closes, the application also closes—other forms that you create during the lifetime of your
application do not have that power. You can, of course, exit an application at any time by using Application.Exit,
but that is not advisable because that technique does not run a Closing event method handler and instantly
stops processing any Windows messages that are in the message loop queue. The clean way is to design your
application so that it closes only when the user closes the main form.

Caution

Any foreground threads that are running will keep your process up even when your
application is not showing any UI elements. Always make sure you have terminated
any threads that you have created. For more information about foreground threads
and correct thread termination, see Chapter 11, "Threading."

Of course, you can decide, as is done for most device applications, not to offer a way to exit the application.
Instead, you can configure your application to smart minimize (that is, it hides and reveals whatever application
is running or showing beneath it); this is the default behavior.

When to close applications, when to minimize?

According to the design guidelines mentioned in the introduction to this chapter, Pocket PC and
Smartphone applications should not include a way to close the application—no Exit menu option or
button. It used to be the case that if you submitted an application for testing under the Designed
for Windows Mobile logo program and it included an Exit option, your application failed verification.
However, the requirements have been relaxed now so that you are allowed to provide a way for a
user to close your application, although it is still preferred to leave it running.

If you do not provide an Exit option, after your application is started, it remains running on the
device until either you reset the device, you close it using a task manager application, or the
operating system orders the application to close because the device is running low on memory. On
a Smartphone, the application smart minimizes (that is, disappears into the background) when the
user presses the Back key to navigate away from your application or selects a new application from
the Start menu. Similarly, on a Pocket PC, the application smart minimizes when the user selects a
different application from the Start menu or presses a hardware button to select one of the built-in
applications such as Contacts or E-Mail. Your application still runs, but in the background.

There is another way to smart minimize a Pocket PC application: by tapping the Close button on the
application title bar (the icon with the X in it). An unfortunate inconsistency runs across the
Windows platform here because on a desktop computer, the Close button means close, not
minimize, and the Exit button is represented by a button with an X in it. However, the decision to
use an X to represent the minimize function on a Pocket PC was made many years ago when the
Pocket PC user interface was being refined into the current style.

If you are wondering whether to provide an Exit option in your application, consider the different
ways a handheld device and a desktop computer are used. Desktop computer users are accustomed
to running many applications simultaneously and minimizing or closing them as needed. A
handheld device, however, is more of an always-on appliance. On a handheld device, the user
expects to start Microsoft Windows Media Player Mobile and be listening to music almost
instantaneously, or to run the Contacts application and gain instant access to contacts. On such a
device, starting an application is slow, and it is much quicker to reactivate an application that is

simply running in the background. The philosophy goes that a handheld device user doesn't care
about closing or minimizing applications, just fast switching between them—and it doesn't matter
how that happens. As a result, your users will perceive faster startup time for your application if,
when they select it from the Programs menu, they simply reactivate a smart-minimized application
that is already running rather than starting the application all over again.

For more information about the smart minimize feature, see the Windows Mobile Team Blog Web
site at blogs.msdn.com/windowsmobile/archive/2006/10/05/The-Emperor-Has-No-Close.aspx.

On Pocket PCs, whether an application smart minimizes or actually closes is determined by the ControlBox
appearance and, in particular, whether a close button or an OK is displayed, as shown in Figure 2-5.

Figure 2-5. Using the Close button (on the left) or the OK button (on the right)

[View full size image]

Note

On the Smartphone, the dedicated hardware Back button is the equivalent of the
Close button. You must provide your own Done soft key to simulate the Pocket PC
OK button. You can read more on soft keys later in this chapter in the section titled
"Exploring Important Windows Forms Controls."

On a Pocket PC device, you can customize the minimize behavior in code by toggling the Boolean value of the
form's MinimizeBox property (false displays an OK button; true displays a Close button). Setting the form's
ControlBox property to false leaves the upper-right corner blank, and then it is up to you to provide an
alternative means for the user to switch away from the form. At this point, it is worth mentioning that you can
use the Form.Show and ShowDialog methods to open secondary forms just as on the desktop. If you use the
ShowDialog method, the form will have an OK button in the upper-right corner (with the associated behavior
described earlier) and the MinimizeBox property will be ignored. Note that using the ShowDialog method, as on
the desktop, results in a modal dialog box.

A couple of relevant pieces of information follow. When any form switches to the background, its Deactivate
event is raised. If the user closes a nonmain form by using the OK button in the upper-right corner, the Closing
event is raised instead. Also, if a form displays the Close button but you actually really want to close the form by
using code, you can use the form's Close method (note that this is the only route available on the Smartphone).
The following code examples demonstrate:

 private void frmShown_Closing(object sender, CancelEventArgs e)
 {
 // When this form is closed
 // by using OK or Close method call

 Debug.WriteLine("Closing");
 }

 private void frmShown_Deactivate(object sender, EventArgs e)
 {
 // When this form goes to the background
 // (closed, smart minimized, or otherwise)
 Debug.WriteLine("Deactivate");
 }

 private void menuItem1_Click(object sender, EventArgs e)
 {
 // Same as clicking the OK button
 // If form has Close button, this still closes the form
 // as if it had an OK button.
 this.Close();
 }

Form Navigation

This section discusses form navigation. Forms on a Windows Mobile device (with the exception of message

boxes) are always full screen,[1] and the user can interact with only one form at a time. This makes navigating
between forms fairly tricky—not to mention that if a specific task requires more than one screen, users are
expected to remember what the previous screen displayed! You should try to minimize the number of
screens/forms with which the user must interact and try especially to minimize the dependencies between forms.

[1] Technically, on a Pocket PC, you can change the size of the form by setting the FormBorderStyle to None. Not only will your

form look funny, but other issues will arise, and so it is our opinion that you should stick with the platform guidelines.

To be notified when your form is navigated to (or navigated away from), use the Activated and Deactivate
events. The forms that you do decide to open should generally be very task specific, with a shorter lifetime than
the main screen of the application, and generally they should be shown by using the ShowDialog method (that
is, modal forms). You can use Show (instead of ShowDialog) if you'd like the original form to continue with some
processing instead of being blocked while waiting for the shown form to return. You'll see later, however, that
this is rarely a good idea.

The only built-in mechanism that a user can use to navigate between different top-level windows on a Pocket PC
is a long-winded path of taps: First, tap the Start menu, and then the Settings menu, and then the System tab,
and then the Memory icon, and finally tap the Running Programs tab. Note that this is not a list of processes, but
rather this sequence displays all top-level windows that have a nonzero-length caption. Typically, in the Running
Programs screen the user of the device sees all current programs (with a UI) that are running.

Ensuring That an Application Shows Only Once in the Running Programs List

If you create and run a two-form project in Visual Studio, and then browse to the Running Programs list, you'll
notice that both forms are showing and that you can browse to either:

 private void button2_Click(object sender, EventArgs e)
 {
 frmShown f = new frmShown();
 if (checkBox1.Checked) // show modal
 {
 f.ShowDialog();
 }
 else
 {
 f.Show();
 }
 }

This is generally not desirable. If you have shown a modal form (that is, by using ShowDialog), users can see the
parent form in the Running Programs list, but when they try to activate it, the modal form appears instead (as
you would expect). If you have shown a second form nonmodally (that is, by using Show), users can activate the
parent form when you probably intended for them to see only the second form. We present the solution next.

Conceptually, you can think of your application as having just one screen (a screen that may change its
appearance but that is always one screen nonetheless). The first step to achieving the appearance of a
one-screen application is to keep the same caption (use the form's Text property) constant across any forms that
you open. The second step is to ensure that only one form appears in the Running Programs list. You can achieve
both goals by setting the Owner property of the form you are about to show as follows:

 // Show form, ensuring that:
 // 1. only one entry appears in the Running Programs list
 // 2. the single entry has the same caption regardless of form shown

 private void button3_Click(object sender, EventArgs e)
 {
 frmShown f = new frmShown();
 f.Owner = this;
 f.ShowDialog();
 }

Note that using the Owner property approach works if the form is shown by using ShowDialog. If the form is
shown by using Show (you should really be sure that modality was not desired), you must use code as follows:

 // Show form, ensuring that:
 // 1. only one entry appears in the Running Programs list
 // 2. the single entry has the same caption regardless of form shown
 private void button3_Click(object sender, EventArgs e)
 {
 frmShown f = new frmShown();

 f.MinimizeBox = false;
 this.caption = this.Text;
 f.Text = this.caption;
 this.Text = ""; //hides the form from the list
 f.Closed += new EventHandler(f_Closed);
 f.Show();
 // Code in this form still runs (that is, it is not modal),
 // but users cannot navigate to it until they close the form shown.
 }

 private string caption;
 void f_Closed(object sender, EventArgs e)
 {
 this.Text = caption;
 this.BringToFront();
 }

Visual form inheritance

When you design forms in Visual Studio, you may be tempted to use visual form inheritance. Visual
inheritance is inheritance (in the object-oriented sense) in which both the parent and the child
classes are forms. The benefits are that you can visually design a form once and then reuse that
visual design in other forms by inheriting from the base form. You can use visual inheritance in
Visual Studio 2005 by selecting Add New Item from the Project menu and selecting Inherited Form
from the list of templates (see Figure 2-11). However under certain circumstances it is possible for
the designer to break when using visual form inheritance, as shown in Figure 2-6.

Figure 2-6. Broken forms designer when base form uses device-specific

functionality; on the right, same form after the fix (note the inherited controls with

arrows)

[View full size image]

To rectify this, follow these steps:

1. Right-click frmBase, and then select View Class Diagram.

2. Select the class shape, and then go to the Properties dialog box.

3. Select Custom Attributes to open the Custom Attributes window for the form.

4. Add the following line of code to the window, and then click OK: DesktopCompatible(true)

5. Rebuild your solution, and the form should appear fine in the designer.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Exploring Important Windows Forms Controls

As mentioned earlier, the Windows Forms controls available to device projects are a subset of the controls
available to desktop projects. Even when a control is supported on both platforms, the members of the class on
the device platform are a subset of the members you find in the same class on the desktop platform. For
example, the Button control in the .NET Compact Framework does not have an Image property. As on the full
framework, all controls ultimately inherit from the Control class. Figure 2-7 shows what is available in the base
Control class, but note that not all of those members are implemented in the controls you will instantiate (that
is, not all controls provide implementations by overriding the members you see in the figure).

Figure 2-7. Base Control class properties, methods, and events (created with the new Class

Designer in Visual Studio 2005)

[View full size image]

It could take multiple pages to discuss each control in detail, but the goal is not to duplicate the free online
MSDN documentation. Instead, the following sections highlight some key controls, in particular how they work on
the device platform, and address some frequently asked questions.

Panel

Although the .NET Compact Framework does not include a GroupBox control, there is a Panel control.
Fundamentally, the Panel control is a container for other controls (much as the Form control is) and can be used,
for example, to group together multiple RadioButton controls. Its only interesting members are the AutoScroll
property and the Resize event. Both of these are relevant for when the screen changes orientation (covered in
the section titled "Orientation [and Size]" later in this chapter). For now, suffice it to say that when you set
AutoScroll to true, a scroll bar will appear when any controls contained by the panel do not fit in its visible

boundary. Also, every time the size of the panel changes, the Resize event can be handled to lay out the child
controls again according to the new size.

So, that is one use of a panel: to group certain controls together to treat them all as one unified item. (If you
want the user to treat these controls as one set, you can change the BackColor property of the panel as a visual
aid.) For example, disabling the panel disables its children. Another use of the Panel control is for hiding and
showing a group of controls. Simply place the controls in the panel, and then toggle the Boolean Visible property
of the panel. You can use this technique to avoid creating multiple forms. Instead of switching between forms,
you can switch between panels on the same form by toggling the visibility of the panels. Although this may
reduce the overhead of multiple forms, it does increase the complexity of the form that hosts the multiple
panels, so you must consider carefully whether to use this technique. In particular, if you cite performance as
one reason to employ this technique, ensure that you have measured both approaches because the results
sometimes can be surprising.

Another scenario in which to use a Panel control is for a login screen. Some applications require users to log in
before they can interact with the remainder of the application. A mistake many developers make is to design the
main form as the login form and then to show the rest of the UI in other forms. This is a mistake because the
login form has no use for most of the lifetime of the application, but you have to keep it around because closing
the main form closes the application. An alternative approach is to open a main form and then immediately open
yet another modal form for the user to log in; this may be sufficient in many scenarios. Instead, the main form
can start by using a panel (which contains login controls) that is visible, and after the user authenticates, you
can simply hide the panel (optionally removing or disposing of the controls) and allow the user to interact with
the main form. The following code assumes you have added over your main form design a Panel control
containing login controls:

 // Your login method
 private void Login(...)
 {
 if (LoginSuccess()) // your login success criteria
 {
 // Hide the login panel with all the login controls.
 panel1.Visible = false;
 // You will not use those controls again in this instance of the app.
 this.Controls.Remove(panel1);
 panel1.Dispose();

 // Required because the last control with focus will be on the panel.
 this.Focus();
 }
 }

TabControl

One of the popular controls for Pocket PC development is the TabControl. You can use this control to load the
form with many controls while allowing the user to switch quickly between different tabs. Notice how on the
device the tabs appear at the bottom of the display, which is contrary to desktop applications in which tabs
appear on the top (the sample code of this chapter shows this). This is a common design paradigm for touch
screen devices. Try, when possible, to restrict the area users must tap to the bottom of the screen so that when
they tap, their hand does not obscure the screen and hence the design of the TabControl.

A TabControl is generally used to occupy the entire form; however, you can resize it and change its location by
using its Dock and Location properties, respectively. Another property that you are sure to use is the TabPages
property, which represents a collection of TabPage objects that are the containers for controls you can place in
each one. The most useful event is the SelectedIndexChanged event that notifies you when the user changes
tabs.

Many developers want to know how to remove TabPage objects and prevent navigation from one TabPage to the
next. The only way to hide a TabPage is actually to remove it from the TabPages collection (and then add it later
when you need it again). Also, unfortunately, there is no easy way to prevent navigation from one TabPage to
another; for example, if a user clicks the second TabPage but for some reason (that is, validation) you want to
keep the user on the first TabPage, you must write code specifically to handle this. An example follows:

private int lastIndex = 0;
private void tabControl1_SelectedIndexChanged(object s, EventArgs e)
{
 int newIndex = tabControl1.SelectedIndex;
 if (newIndex == lastIndex)
 {
 // Validation failed.
 tabControl1.TabPages[lastIndex].BackColor = Color.Red;

 // Prevent infinite loop.
 return;
 }

 if (checkBox1.Checked) // Replace with your own validation logic.

 {
 tabControl1.SelectedIndex = lastIndex; // Raises this event again.
 return;
 }

 // Update your knowledge.
 tabControl1.TabPages[lastIndex].BackColor = Color.White;
 lastIndex = newIndex;
}

Menu (Soft Keys), ToolBar

Menus on Windows Mobile–powered devices appear near the bottom of the screen (for the same design reasons
discussed earlier for the TabControl). In a Pocket PC project, if you add a MainMenu control and a ToolBar control
and populate each with its items (menu items and toolbar buttons, respectively), they appear next to each other.
In other words, only one bar on the Pocket PC shows the results of merging a menu bar and a toolbar, as shown
in Figure 2-8.

Figure 2-8. MainMenu and ToolBar controls, at design time (left) and at run time (right)

[View full size image]

On devices that use Windows Mobile 5.0 and later, a unification on the menu concept occurred between the
Pocket PC and the Smartphone platforms. As a result, the guidelines suggest that there should be no toolbar and
that applications should have only two top-level menus known as soft keys. (See Figure 2-9.)

Figure 2-9. Soft keys at design time (left) and at run time (right)

[View full size image]

Soft keys are clickable on touch screens but are usually paired with two hardware buttons that users can use to
click the soft keys. As always, from a code perspective soft keys are simply menu items, and their Click event is
handled in the usual way.

Soft keys are a powerful concept, and you should strive to make as much use of them as possible. Try to move
all actions and commands to the soft keys, and try to contextualize the soft keys by changing their Text (and
behavior) based on what is selected on the screen. The official guidelines go further by stating that the left
button should represent the primary function and the right button should hold all other menu options.

Tip

There is no MenuItem.Visible property, so the workaround is to remove the
MenuItem instead (and readd or reinsert it as appropriate).

Microsoft.WindowsCE.Forms

Although we like to think of the .NET Compact Framework as a subset of the full desktop framework, in reality it
is not a true subset because it includes some additional assemblies. Specifically, the Microsoft.WindowsCE.Forms
assembly contains certain classes useful only in the context of device development (mostly Pocket PC only).

DocumentList (Pocket PC Only)

The DocumentList control is a full-screen control that provides the same interface as the built-in file explorer for
working with folders and files in the My Documents folder. Simply create an empty form, double-click the control
in the Toolbox to add it to the form, and then run the project to see what it looks like and how the user can work
with it (see Figure 2-10).

Figure 2-10. DocumentList control

[View full size image]

The DocumentList control has three interesting properties, Filter, FilterIndex, and SelectedDirectory, and three
events, DocumentActivated, DeletingDocument, and SelectedDirectoryChanged. It is extremely easy to use:
simply place the control on your form, where it fully docks to take up the entire form. Then set its properties
through the Properties window. An online example demonstrates the control in action on the MSDN Web site at
msdn2.microsoft.com/en-us/library/ms172535.aspx.

Notification (Pocket PC Only)

The Notification component is used to show notifications to the user in the standard Pocket PC fashion (a "balloon
popup" at the top or "toast popup" from the bottom). Simply drop it on a form, set its Text property and
optionally its other properties (Title, Icon, InitialDuration, and Critical) while hooking into its two events
(BalloonChanged and ResponseSubmitted). The component becomes more useful if you set html in its Text
property to present a richer UI. Remember to dispose of the control when you are done with it and want to
remove its icon from the title bar. You can find an online example on the MSDN Web site at
msdn2.microsoft.com/en-us/library/ms172539.aspx.

Other Classes

Microsoft.WindowsCE.Forms contains other classes worth exploring because, after all, it is a device-specific
assembly. We discuss InputPanel, HardwareButton, and SystemSettings in the following sections. With LogFont,
you can draw text at an angle, and in addition to the excellent online sample on the MSDN Web site
(msdn2.microsoft.com/en-gb/library/microsoft.windowsce.forms.logfont.aspx), we discuss this control further in
Chapter 12, "Graphics Programming." Message and MessageWindow have been included since version 1.0, but
their usefulness has diminished in version 2.0 because the Control.Handle property was added as was the
capability to define native callbacks when doing platform invoke and thus to subclass forms—in the native sense
of subclassing, as covered in Chapter 15, "Building Custom Controls." Finally, there is the MobileDevice class
with a single static event (Hibernate) that, when raised, is an indication that you should clear resources; see
Chapter 5, "Understanding and Optimizing .NET Compact Framework Performance," for more on this.

Creating Your Own Controls

Although .NET Compact Framework 2.0 contains many rich controls, there will be times when you require a
slightly different behavior on a control, a means to reuse a collection or combination of controls in multiple
places, or even a control that looks entirely different from the out-of-the-box controls and that exhibits some
very domain-specific behavior. In such scenarios, you have four options: extend an existing control, create a
UserControl, write a custom control, or obtain a third-party control that achieves the goal.

Extending an existing control is as simple as writing a class that inherits from the control that includes
most of the functionality you desire and then extending it by adding your own members. With the .NET
Compact Framework, sometimes you cannot override fundamental methods (that is, OnClick, OnPaint),
and hence this technique has limitations. For an example, see Chapter 15 on custom controls and also the
article titled "How to Create a Numeric Text Box" on the MSDN Web site at msdn2.microsoft.com/en-
us/library/ms229644.aspx.

Grouping a few controls together and treating them as a unified control are achieved by using the
UserControl. Simply add it to your project, and then add controls on its design surface as you do for a
form. A fuller discussion and an example are given in Chapter 15.

Writing a custom control gives you full flexibility (at the cost of complexity) and is the subject of Chapter
15.

Obtaining a third-party control is almost always the cheapest option in the long run, but only if the control
exactly fits the project's requirements. In this latter case, it is preferable to obtain controls that are
extensible and easily customizable and, if possible, that include source code.

Your starting point to extending an existing control, writing a UserControl, or writing a custom control is in the
Add New Item dialog box, which contains templates for all three options, as shown in Figure 2-11.

Figure 2-11. Add New Item dialog box

[View full size image]

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Handling Input

In general, when you think of input methods for a computer, you probably think of a keyboard and a two-button
mouse (sure, you can get a mouse with more than two buttons, but fundamentally a mouse can do two unique
actions). On a device, input is a bit more complex. Some devices have a touch screen (Pocket PCs), whereas
others don't (Smartphones). On devices with a touch screen, the user can use a stylus or a finger to interact with
the device (in the latter case, controls should be large enough to accommodate the size of a person's finger).
Devices with touch screens also often include a SIP that effectively replicates the keyboard of a desktop
computer. Some devices even include a full QWERTY hardware keyboard (and Smartphone devices always
include a hardware numeric phone pad). In addition to any hardware keyboard, most devices have a handful of
hardware buttons dedicated to specific tasks (for example, opening the calendar) as well hardware buttons for
up, down, left, right, Enter navigation (also known as the directional pad, or d-pad for short).

Taps

When the user taps the screen of a touch-sensitive device, from a programmatic perspective it is basically the
equivalent of a mouse click. All the control events with which you may be familiar from the full .NET Framework
apply: MouseDown, MouseUp, MouseMove, Click, and DoubleClick. Be sure to check that the control you use
actually supports the event you require. To do so, simply create a small project and write the event handler
method for the event you are testing. Set a breakpoint in the event handler, and then run the project. Take the
user action that should raise the event (for example, tap the control), and check whether your breakpoint is hit
to determine whether the control actually supports the event. We can't stress enough that some members of the
.NET Compact Framework are missing and hence not all events are exposed by all controls. The documentation
indicates which members are supported by the .NET Compact Framework, and although it is much better now
than it was in version 1.0, it still isn't perfect, which is why we suggest testing for the event before relying on it
in your design.

Because there is no mouse, at first you may assume that there is no right-click functionality. However, right-
clicking is achieved by pressing and holding down the stylus on the screen (known as tap-and-hold). For this
reason, many controls expose a ContextMenu property that you can assign a ContextMenu control that will
appear when the user taps and holds the control, for example, a ListView or a TreeView. Because tapping and
holding with the stylus is not the most intuitive action for users, we recommend you do not rely on and design
your application to use this feature unless you really must.

The absence of a mouse is coupled with the absence of a mouse pointer. On a device, the closest functionality to
a mouse pointer is the busy cursor animation that appears at the center of the screen. You can use the following
code to display the busy cursor:

Cursor.Current = Cursors.WaitCursor;
...
// Some logic...
...
Cursor.Current = Cursors.Default; // Turn it off again.

An often asked question is how to simulate a tap on the screen, for example, a tap on a button. In that particular
example the best answer is: by calling the event handler method directly or inheriting your own control from
Button, and then adding a PerformClick method that simply calls base.Click(). However, if you really want to
simulate a user's click, you can use the Platform Invocation Services (PInvoke) to call mouse_event, as the
following example shows for opening the main menu:

private void button1_Click(object sender, EventArgs e)
{
 PerformMouseClick(this.Left + 5, this.Height + 5, this);
}

// Wrapper for mouse_event, performing click action on coordinates given
public static void PerformMouseClick(Int32 x, Int32 y, Control f)
{
 Point p = f.PointToScreen(new Point(x, y));

 Int32 m1 = (65535 / Screen.PrimaryScreen.Bounds.Width);
 Int32 m2 = (65535 / Screen.PrimaryScreen.Bounds.Height);

 Int32 x2 = m1 * p.X;
 Int32 y2 = m2 * p.Y;

 mouse_event(2 | 0x8000, x2, y2, 0, 0);
 mouse_event(4 | 0x8000, x2, y2, 0, 0);
}

[System.Runtime.InteropServices.DllImport("coredll.dll")]
public static extern void mouse_event(Int32 dwFlags, Int32 dx, Int32 dy,
 Int32 dwData, Int32 dwExtraInfo);

The last thing we have to say about tapping is that you should strive to make your applications operable entirely
without the use of the touch screen—in fact, you might even aim for one-handed navigation! This makes sense
because users are often on the go when they use their devices and hence will need their other hand for some
other activity. Operation without a touch screen is also a great goal if you plan to target both Pocket PCs and
Smartphones because the main difference between the two is the touch screen. In fact, many of the
advancements in Windows Mobile 5.0 and Windows Mobile 6 focus strongly on single-handed navigation of the
operating system GUI components and nonreliance on the touch screen.

SIP and Hardware QWERTY Keyboard

Handling presses on the SIP and from a hardware keyboard is the same as handling key presses on a desktop
computer keyboard. Simply handle the regular control events: KeyDown, KeyUp, and KeyPress. The same advice
applies as mentioned in the previous section: check that the control you use actually supports the event you
require.

In some situations, you may prefer to handle the key events in the form and not for each individual control. In
that case, you can set the form's KeyPreview Boolean property to true and handle the form's events that are
raised when one of its controls receives the input. It is in the form's KeyDown event handler that d-pad events
are handled (and in the Smartphone case, the phone pad button presses as well). Relevant to key navigation is
tabbing, and the good news is that .NET Compact Framework 2.0 controls support the TabIndex and TabStop
properties.

You also should know how to deal programmatically with the SIP. In many cases, you can let the user decide
whether to use the SIP, and users can show it manually (and then hide it manually). In those cases, you may
need to know when the SIP is shown or hidden so that you can change the appearance of the form; for example,
if a text box is placed near the bottom of the screen, you might want to move it upward when the SIP is shown
(and then move the text box back in its original place when the SIP is hidden). Also, you may want to
programmatically show the SIP when the user gives focus to a text box and hide the SIP when the text box loses
focus. To achieve these goals, you must use a control from the Microsoft.WindowsCE.Forms assembly (introduced
earlier), namely, the InputPanel. An example follows:

// Add a TextBox to the form and add the two event handlers.
// Add an InputPanel control to the form.
private void textBox1_GotFocus(object sender, EventArgs e)
{
 inputPanel1.Enabled = true;
}

private void textBox1_LostFocus(object sender, EventArgs e)
{
 inputPanel1.Enabled = false;
}

If you have placed input controls near the bottom of the screen, the SIP will hide them when it appears. If you
can, place input controls at the top of the screen. If you must place an input control where it might be obscured
by the SIP, you can handle the InputPanel.EnabledChanged event to be notified when the SIP is raised, and
reposition the input control. An example of handling the event follows (this example assumes a textBox2 control
is placed near the bottom of the form/screen):

private void inputPanel1_EnabledChanged(object sender, EventArgs e)
{
 if (inputPanel1.Enabled)
 {
 textBox2.Top -= inputPanel1.Bounds.Height;
 }
 else
 {
 textBox2.Top += inputPanel1.Bounds.Height;
 }

}

private void frmBaseWithSIP_Closing(object sender, CancelEventArgs e)
{
 // Must do this to make sure the inputPanel releases
// its reference to this form
 inputPanel1.EnabledChanged -=
new EventHandler(this.inputPanel1_EnabledChanged);
}

In a real-world scenario, you would lay out all the controls again, not just textBox2. If there are too many
controls to fit the screen, you can use an alternative design technique: Place all controls in a Panel control that
has the AutoScroll property set to true; when the InputPanel.EnabledChanged event is raised, resize the
Panel.Height.

With .NET Compact Framework 2.0, you can further choose the input method you desire (keyboard, transcriber,
and so forth.) by using the CurrentInputMethod and InputMethods properties of the InputPanel (for more
information, see "How to Set Pocket PC Input Methods" on the MSDN Web site at msdn2.microsoft.com/en-
us/library/ms172538.aspx).

Hardware Keys

Pocket PCs can have up to six standard hardware buttons (think of them as ApplicationButton1 through
ApplicationButton6). With the new HardwareButton component, you can capture events when these buttons are
pressed (in the KeyDown, KeyUp events of the form, after you set Form.KeyPreview to true). Simply create the
components, associate them with a Form or UserControl (no other control types can be used) by using the
AssociatedControl property, and then indicate to which button the settings apply (in the HardwareKey property).
You must supply a separate HardwareButton control for every hardware button that you want to handle. Be sure
to handle the exception that may be thrown if the device does not include a particular button for which you have
written code to capture events! An example is online at msdn2.microsoft.com/en-us/library
/microsoft.windowsce.forms.hardwarebutton.aspx.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Considering the Physical Screen

An advantage of the Windows Mobile platform is that it supplies multiple device form factors all capable of
running the same platform while catering to the needs of a variety of users. With this advantage comes a
burden, however: The developer must write code that adjusts to all those requirements. One particular area of
concern is screen size, orientation, and resolution.

Orientation (and Size)

Orientation on some devices is fixed, whereas on others it can change on the fly (and your application must react
sensibly to that). Some devices use portrait orientation whereas others use landscape, and most current devices
can toggle between the two. Further challenges arise with square screens that are available on some models.
Screen size does not refer to the physical dimensions of the screen, although those do vary considerably, but
rather to the resolution of the display measured in pixels, for example, 320 x 240, 240 x 320, and 240 x 240
(higher resolution is discussed later). Note that many Smartphones have a resolution of 176 x 220 and Windows
Mobile 6 introduces the resolution 320 x 320. As a developer, you have tools to deal with some of these screen
issues.

To detect the orientation of the device when your application starts (or indeed to change the orientation
programmatically), you can use the static property ScreenOrientation of the SystemSettings class in the
Microsoft.WindowsCE.Forms assembly, as the following example shows:

// Read the orientation.
label1.Text = "Orientation is " + SystemSettings.ScreenOrientation.ToString();
// Set the orientation.
SystemSettings.ScreenOrientation = ScreenOrientation.Angle90;

To query the exact resolution of the device, you can use the Screen class (from the System.Windows.Forms
namespace), as the following example demonstrates:

label2.Text = "Screen size is " + Screen.PrimaryScreen.Bounds.Width +
 " x " + Screen.PrimaryScreen.Bounds.Height;

Finally, to be notified at run time when the orientation changes, you can handle the Resize event of the Form (or
from other containers, for example, the panel as mentioned earlier in this chapter).

With the preceding three techniques, you can gather all the information you need. The next step, of course, is to
actually do something with this information. One obvious but less than ideal choice is to design for square. If
your entire UI can fit in a square, on both landscape-oriented and portrait-oriented devices you simply do not use
the extra space on the right and the bottom, respectively. Figure 2-12 shows an example of a square design.

Figure 2-12. Design for square

[View full size image]

Although this solution is not always possible, it is always worth considering because it can work for some of the
less complex screens of an application. Another solution is to use scroll bars. In other words, design the
application for one orientation (for example, portrait) and set to true the AutoScroll property of the form (or of a
panel, as mentioned earlier). When the user runs the application on a different orientation (for example,
landscape or square), a scroll bar appears so that the user can scroll to the portions that do not fit on the screen.

Again, the solution of using scroll bars is not the best but may be acceptable for some of your screens. The best
solution is actually to design your screens for each orientation, portrait, landscape, and square, and lay out the
UI at run time every time as appropriate. With version 2.0 of the .NET Compact Framework, you can do this more

easily because controls have docking and anchoring properties. Docking[1] and anchoring[2] behave exactly as
they always have for the full .NET Framework and are not discussed further here (see Chapter 1 for a brief
overview). Figure 2-13 shows docking and anchoring effects.

[1] Control aligns itself with the docked edges of its parent control.

[2] Control's anchored edges remain in the same position relative to the edges of the parent control.

Figure 2-13. Docking and anchoring effects

[View full size image]

If you use docking and anchoring (or if you have done nothing yet for orientation support), you can test what
your application will look like under different orientations in Visual Studio without ever running the application.
Simply right-click the form, and select Rotate Right and Rotate Left. If you do have run-time logic, of course you
must run your application to test that (and the emulator supports that through the Calendar hardware button,
which is mapped to rotate the screen).

Resolution

What if you must support resolutions of 480 x 640 (for Smartphone, 352 x 440), 640 x 480, and 480 x 480?
Notice how these resolutions are simply the resolutions described earlier multiplied by two? This means that all
the strategies described earlier for handling orientation changes apply exactly to these higher resolutions.

When you first encounter the latter three screen resolutions, you may think, "More space equals more controls."
Actually, that is not true and implementing such a scheme is strongly recommended against. Higher resolution
simply means better-looking UIs. It means more precision, higher-resolution icons, and an overall better user
experience. It does not mean you should place more controls on the screen; this becomes obvious after you
realize that these higher resolutions are not actually running on screens that are twice the physical size but
simply have more dots per inch (dpi). What you must do is scale your UIs to the higher resolutions so that the
look and feel are identical.

If you set the form's AutoScaleMode to AutoScaleMode.Dpi (located in the Properties dialog box when the form is
selected in the forms designer), the .NET Compact Framework controls scale automatically. This is the default
behavior for new version 2.0 projects, but you may need to configure this setting manually for upgraded
projects. You can test what an application will look like under different resolutions in the designer without
running the application. Go to the form's Properties dialog box and select a different value in the FormFactor
combo box (for example, Pocket PC Square VGA). It is interesting to understand what the property does in code
to achieve the results. To see what it does, simply look at the FormName.Designer file (as discussed in the
sidebar titled "Partial Classes" earlier in this chapter) and find the one line of code responsible for the behavior:

this.AutoScaleDimensions = new System.Drawing.SizeF(192F, 192F);
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Dpi;

Effectively, the dpi is changing from 96 to 192, which is what the higher resolutions use (recall that the higher
resolutions are twice the dpi of the earlier resolutions). Note that after you assign the AutoScaleDimensions
property, it is the call to the form's ResumeLayout method that actually does the scaling. If the
AutoScaleDimensions property indicates the dpi under which you designed the form, how can you query to find
the dpi of the device on which your application is running? This is discussed next.

In some situations, automatic scaling as described in the preceding paragraph is not enough. Such scenarios
include custom drawing (for example, in custom controls in the OnPaint method), adding controls at run time,
and images loaded in your UI (for example, in a PictureBox). First, you must determine the dpi of the device and
store that information with global access:

 static class Program
 {
 /// <summary>
 /// The main entry point for the application
 /// </summary>
 [MTAThread]
 static void Main()
 {
 frmScaling f = new frmScaling();

 const float designResolution = 96.0f; //typical
 System.Drawing.Graphics g = f.CreateGraphics();
 float runningResolution = g.DpiX; //g.DpiY will return the same value
 ScaleFactor = runningResolution / designResolution;
 g.Dispose();

 Application.Run(f);
 }

 // Multiply all custom drawing with Program.ScaleFactor.
 // Most of the time this will have one of three values.
 // 1 , when we designed for exactly what we run on
 // 2 , when we designed for 96 dpi but we are running on 192
 // 1.365, when we designed for 96 dpi but we are running on
 // 131 (QVGA Smartphone)
 internal static float ScaleFactor;
 }

Then you must scale the size and position of any custom drawing, as the following code shows (see Figure 2-14
for an illustration of the effects).

Figure 2-14. Custom scaling; result of code sample given in the text

// Run this project on both VGA and non-VGA devices.
private void frmScaling_Paint(object sender, PaintEventArgs e)
{
 int left = 5, right = 5, width = 200, height = 200;

 Rectangle r = new Rectangle((int)(left * Program.ScaleFactor),
 (int)(right * Program.ScaleFactor),
 (int)(width * Program.ScaleFactor),
 (int)(height * Program.ScaleFactor));
 float thickness = 2;
 Pen p = new Pen(Color.Red, thickness * Program.ScaleFactor);

 e.Graphics.DrawEllipse(p, r);

 Brush b = new SolidBrush(Color.Blue);
 float x = 75, y = 100;
 e.Graphics.DrawString("scales well", this.Font, b,
 x * Program.ScaleFactor,
 y * Program.ScaleFactor);
 p.Dispose();
 b.Dispose();
}

By following this advice, you never have to call the Control.Scale method; we only mention it here so that you
are aware that manual on-demand scaling is possible. This may become relevant when you build custom controls
for which scaling may not be straightforward (in which case you may need to override ScaleControl, which is the
method that Control.Scale calls).

Don't forget that for every image in your project, you must create another image at twice the size for the higher-
resolution devices. Don't forget to do this also for the icons included with the application (that is, in addition to
16 x 16/32 x 32 also include 64 x 64).

Microsoft patterns & practices Orientation-Aware Control

One of the useful components in the Microsoft patterns & practices Mobile Client Software Factory is a control
that you can use to design your form layouts at different screen orientations and screen resolutions and that
applies the appropriate layout automatically at run time. Windows Mobile 5.0 and later versions support this
control. See the section titled "Using Community Resources" in Chapter 1 for more information about the Mobile
Client Software Factory, including how to download it.

After installing the Mobile Client Software Factory, you can easily use the OrientationAware control in your
projects, as described here.

Using the Orientation-Aware Control

In your project, add a reference to Microsoft.Practices.Mobile.UI.OrientationAware. You must also add

a reference to Microsoft.WindowsMobile.Status (and its dependency, Microsoft.WindowsMobile)

because the OrientationAware control hooks events exposed by classes in that namespace to detect

changes in the screen orientation of the device at run time.

1.

Add a new UserControl to your project. After it is added, close the design view of the new control,

open the control again in code view (right-click the control in Solution Explorer and click View Code),

and then modify it so that the control inherits from the ResolutionAwareControl as follows:

 ...
 namespace MyApplication
 {
 public partial class MyUserControl :
 Microsoft.Practices.Mobile.UI.OrientationAwareControl
 {

2.

Now build the project. After it has built successfully, open the user control in design view again. If you

look beneath the Properties dialog box, you will see additional actions that are specific to the

OrientationAware control, including Rotate and Switch To Default Layout.

3.

The control shows the default layout initially. Resize the control to the required size; for example, to

match a standard Pocket PC screen in QVGA resolution, set it to 240 pixels wide by 320 high. Then lay

out the UI by dragging controls from the Toolbox in the usual way.

4.

Click the Rotate command shown below the Properties dialog box. The designer repaints the control

in landscape orientation, 320 x 240, but the controls that you positioned on it in portrait orientation

are almost certainly not in the best position in landscape. Reposition the controls as you want them in

the new orientation. This process is illustrated in Figure 2-15.

Figure 2-15. With the OrientationAware control, designing the default layout (left),

rotating the control to an alternative orientation (center), and then modifying the

layout to suit the new orientation (right)

[View full size image]

5.

The control stores the positions of controls you have placed inside it in resource files. You can create

layouts for different screen dimensions and for different resolutions. When you use this user control on

a form in your application, the control detects the current screen orientation and resolution, looks for

stored layout settings that you created for that orientation and resolution, and applies them. If there

are no settings that match, it uses the default settings.

6.

The OrientationAware control makes it easy to design a UI that adapts to different run-time conditions, and it
gives you more control over layout than if you use docking and anchoring alone.

Alternative Design

Making complex GUI applications orientation and resolution aware while maintaining a nice look and feel on
various screen sizes is certainly possible but at the cost of code complexity and sometimes with undesirable
tradeoffs. For this reason, some enterprises choose a specific device model to deploy to their workforce, and
consequently the enterprise's developers must write code only for a certain device. Not only does deployment of
standard devices to users result in code that is easier to maintain, but it also significantly reduces the test
matrix.

Another alternative is to design different forms for different device form factors. This shifts the run-time
decisions to design time at the expense of maintaining different codebases. This option becomes even more
attractive when you have to support both Smartphones and Pocket PCs. Because not all controls are available for
both platforms (this is discussed further in the next section), if you want to support both form factors with a
single codebase that makes the decisions at run time, you must use only a subset of all the features available
and also limit the user's experience to the lowest common denominator. Remember, the best GUIs are target-
specific.

Maintaining different codebases and making UI layout and positioning decisions at design time are fairly

straightforward activities almost identical to the technique you can use to share code between the device
platform and the desktop. First, you must ensure that the application's business logic is not mingled with the UI
code. In other words, the main functionality of the application should be contained in classes (or in classes that
reside in a separate dynamic-link library) and not directly in the event handler methods on the form. When you
look at the form code, you should see only logic that manipulates the UI (for example, through control
properties) and that ultimately calls a method or two on external classes that carry out the real work.

More Info

For more information about layering an application, look at the multiple resources
on the Web and in books about the Model View Controller (MVC) and Model View
Presenter (MVP) patterns.

The next step is to create separate Windows Forms projects for each target (for example, one for Smartphone
and one for Pocket PC) and design target-specific forms. If the classes that contain the business logic are in a
separate class library, you can simply reference the dynamic-link library (or libraries) and make the calls to the
same classes from both UI projects, thus sharing the business logic. The alternative is to include the same code
files in both UI projects, ensuring that a copy is not made and that indeed changing one class file updates both
projects. You can do this from the second project you create by linking the code file to the project (on the Project
menu, select Add Existing Item, browse to the existing file, and then select Add As Link).

Finally, if you do want to alter the business logic as well, you can use conditional compilation because the
projects have been separated; for example:

 private void SomeMethod()
 {
#if PocketPC
 // Do something Pocket PC–specific.
#elif Smartphone
 // Do something Smartphone-specific.
#else
 // Do something desktop-specific.
#endif
 }

Remember the partial classes feature mentioned earlier in this chapter? As an alternative to conditional
compilation, you can use partial classes. You can move methods that do not apply for a given platform to a
separate file that is still a part of the class for the platform to which they do apply but is not included in the
project that targets the platform for which they do not apply. By doing so, you reduce the amount of unusable
code that is compiled in the binary while making maintenance of the code easier.

As a parting thought, remember not to hard-code various approaches based on today's technology. A better
practice is to write generic code that will work on future new devices. For example, when the first landscape-
oriented Smartphone device was launched, it caused issues because in the past all Smartphones used portrait
orientation. Many applications were not usable on this new Smartphone because developers had made
hard-coded assumptions in their code. Another example is Windows Mobile 6, which introduces the new 320 x
320 resolution at 129 dpi; will your application look correct on such a device?

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Developing for Smartphones

Please do not view this section as the only one addressing the Smartphone. In all the previous sections of this
chapter, although the advice applies to Smartphone development the focus has been on Windows Mobile Pocket
PC development, highlighting where methods do not apply to Smartphone and noting relevant differences.

Developing UI applications for Smartphones requires you to understand the Smartphone platform. Reading the
guidelines mentioned at the beginning of this chapter is essential, as is understanding the one-handed paradigm
mentioned earlier as a good goal for Windows Mobile–powered devices.

Control Behaviors

Table 2-1 provides quick descriptions of the behavior of some of the controls available for Smartphones.

Table 2-1. Smartphone Control Commentary

Control Function

Label, Panel, PictureBox,
ProgressBar, Timer, ImageList,
VScrollBar, HScrollBar,
WebBrowser

No user interaction, just provide information.

CheckBox

ComboBox

TextBox

Should be the only interactive control on a single line/row
on the screen.

Use the Up and Down buttons to move to the previous and
next control on the form.

ComboBox Use the Left or Right button to navigate through the items
in the combo box list. Pressing Enter displays a full-screen
list of the items from which the user can select by scrolling
using the Up and Down buttons.

Use the Up and Down buttons to move to the previous and
next controls on the form.

TextBox Left/Right button moves the caret in the text box. The
Back button erases a character. If the text box is
Multiline=true, pressing Enter displays a full-screen text
box (with scroll bars if needed).

Use the Up and Down buttons to move to the previous and
next controls on the form.

CheckBox Left/Right/Enter toggles the state.

Use the Up and Down buttons to move to the previous and
next controls on the form.

ListView, TreeView, DataGrid Must be the only (interactive) control on the form because
there is no automatic way for these controls to pass focus
to another control.

TreeView Up/Down moves through the visible tree node items.
Left/Right scrolls horizontally if there is a scroll bar visible.
Enter expands/collapses a tree node.

ListView Up/Down moves through the ListView items. Left/Right
scrolls horizontally if there is a scroll bar visible. Enter
generates the ItemActivate event.

Control Function

DateTimePicker Left/Right moves between the different fields of the control
(that is, day, month, year). You can edit the values by
using the numeric keypad. If no other focusable control is
on the form, the Up/Down buttons also change the
selected field in the control; otherwise, they pass the
focus.

Note from the list of controls the absence of a Button or any other control that requires direct tapping. You
cannot tap on the screen, and hence such controls are absent. This makes it even more important for you to
make good use of the two soft keys that map to the menu control, as mentioned earlier in this chapter.

Navigation Paradigm

Study Table 2-1, and use some of the built-in applications on the Smartphone; for example, populate and
navigate the contacts list, and do the same for the appointments and tasks. A three-view navigation paradigm
will become apparent: Items are listed in a vertical list (literally or virtually); selecting an item shows a new
screen with more details about the item; and choosing to edit the item shows yet another screen with edit
capabilities. You will find this list-based UI pattern useful for many Smartphone applications.

InputModeEditor

Microsoft.WindowsCE.Forms.InputModeEditor is a class with a single static method (SetInputMethod) that
accepts two arguments: a control object (which can only be an instance of a TextBox) and an enumeration
(InputMode) that specifies how the phone pad keys should behave (Text, T9, and Numeric). The behavior of this
class is self-descriptive, but you can see an example online on the MSDN Web site at msdn2.microsoft.com/en-
us/library/ms172542.aspx.

IntelliSense for Smartphone Projects

Some developers may paste Pocket PC (or even desktop) code into a Smartphone project and rely on no build
errors to verify that the code works. If you do so, it is paramount that you also check the Warnings in the Error
List window because for some types or members a line of code may compile but will at best have no effect at run
time (for example, assigning the Form.MinimizeBox property) and at worst will throw a NotSupportedException
at run time (for example, creating an InputPanel class in code). You can catch both cases by checking the
Warnings list because they will appear there.

However, the preceding situation does not occur if you let Microsoft IntelliSense help you when you type in code.
Only applicable types and members show up in the IntelliSense window.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Developing for Windows CE–Powered Devices

If you are developing for a custom Windows CE–powered device (that is, a device that runs Windows CE and not
Windows Mobile), you may have felt left out reading this chapter because we have focused on the Windows
Mobile story. The truth is that although the .NET Compact Framework behaviors are largely identical on Windows
CE–based and Pocket PC devices, there are some differences, and most of them are at the UI level. What is also
true is that no two custom Windows CE–powered devices are identical because, by definition, they are custom
hardware that have different capabilities running on a customized version of Windows CE. This section highlights
some of the UI differences and, along with the previous sections, gives the Windows CE developer enough
information to start developing UI applications using .NET Compact Framework 2.0.

The shell on custom Windows CE–powered devices (whether aygshell or the standard shell) appears different
from the Windows Mobile shell. Menus, toolbars, tab controls, combo boxes, and all the other controls appear the
same on Windows CE–powered devices as they do on the desktop. (There are slight differences between
Windows Mobile and Windows CE, as noted earlier.) You can choose to make windows any size (but they still are
not resizable by the user at run time), and the user is not restricted to a form per screen. Windows have both
Minimize and Maximize buttons that behave like their desktop counterparts, and the Close button will close the
form (that is, no smart minimize behavior is included, and there is no OK button option for Windows Forms). The
SIP on Windows CE–powered devices is not restricted to the bottom of the screen but is a window that can be
moved around. Just as on the desktop, the taskbar contains the Start menu and any minimized windows. It is
important to note that a custom Windows CE–powered device may have any screen size and any resolution that
the original equipment manufacturer (OEM) chose. It may even have a mouse and a real mouse pointer on the
screen.

By now, you might conclude that there is little point in starting development unless you have the actual device
on which to debug (or at least a high-fidelity emulator provided by the OEM). We think it is actually easier to
target a custom Windows CE–powered device compared to a Windows Mobile–powered device because you can
simply work with a very particular locked-down platform. From a UI development perspective, this is actually
closer to developing for desktop computers than it is to developing for the Windows Mobile platform.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

The collection of tips and tricks in this chapter can be distilled into the following pieces of high-level advice:

Understand the platform you are targeting from an end user perspective.

Understand how the .NET Compact Framework controls behave on the chosen platform.

Understand how the .NET Compact Framework controls differ from desktop controls.

When designing your solution, always test any assumptions by building a prototype and running it on the
target device.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 3. Using SQL Server 2005 Compact Edition and Other
Data Stores

In this chapter:

Using SQL Server 2005 Compact Edition Databases 74

Creating Connections to Data in Your Project 85

Building a Data-Bound GUI 111

Persisting Data Without a Database 134

Most business applications require data to be stored, organized, and viewed. A simple application can simply
persist data in a file, whereas more complex applications can benefit by using a database because of its
capability of organizing data in tables, providing fast searching using indexes, and representing master–child
relationships between data in different tables through foreign keys. As well as storing the data, the application
usually must display data to users so that they can read and update it.

This chapter looks at the different ways you can organize and persist data. First, it explains how to create
Microsoft SQL Server 2005 Compact Edition databases to use in your application, and then it looks at how you
can use the visual designer tools in Microsoft Visual Studio 2005 to define project data sources and bind them to
controls in your graphical user interface (GUI). You will learn how to program the SqlCeResultSet object, which
allows fast, updatable access to data in a SQL Server 2005 Compact Edition database and is a high-performance
alternative to the typical ADO.NET TableAdapter–DataTable pattern. Finally, for those situations in which a
database is too complex a solution, you will learn how to use lighter-weight data stores such as simple class
objects that you can persist using Extensible Markup Language (XML) serialization.

This chapter restricts itself to describing solutions where data is stored on the device. If you want to know how to
synchronize data with back-end servers, or fetch and store data in a SQL Server 2005 database on a network, see
Chapter 7, "Exchanging Data with Backend Servers."

Using SQL Server 2005 Compact Edition Databases

SQL Server 2005 Compact Edition (which we refer to from here on as SQL Server CE) is a lightweight relational
database that supports data types that are compatible with full SQL Server 2005. It runs in-process in your
application, meaning that it does not require a separate server process to operate. You can use it in Microsoft
.NET Compact Framework applications running on Microsoft Windows CE or Windows Mobile, and also in .NET
Framework applications running on Windows 2000, Windows XP, or Windows Vista. SQL Server CE also comes
with application programming interfaces (APIs) that you can use in native applications.

Important

When Visual Studio 2005 and .NET Compact Framework version 2.0 were first
released, the database for devices was called SQL Server 2005 Mobile Edition. At
that time, it was supported only on mobile devices and Tablet PCs. SQL Server 2005
Compact Edition is the same product, although it is now supported on all Windows
desktop platforms as well as on devices. It has been renamed to emphasize the fact
that it can be used on more than just mobile devices. To see the new name used for
the product in the Visual Studio 2005 user interface, you must install Visual Studio
2005 Service Pack 1 (SP1) or later and install the new version of the run-time
components. To see the new name in SQL Server Management Studio, you must
install SQL Server 2005 SP2 or later. You can download service packs for Visual
Studio and SQL Server from the Microsoft MSDN Download Center Web site at
www.msdn.microsoft.com/downloads.

The previous version of this product, called SQL Server CE 2.0, was supported for managed applications built
using .NET Compact Framework version 1.0. Existing applications built with .NET Compact Framework 1.0 and
SQL Server CE 2.0 will run on devices that have the .NET Compact Framework 2.0 runtime installed, but you
cannot create new .NET Compact Framework 2.0 applications using SQL Server CE 2.0; you must use SQL Server
2005 Compact Edition.

Note

The other (incorrect) name that is often used in developer forums for SQL Server
2005 Compact Edition is SQL Server CE 3.0.

Creating a Database Using Visual Studio 2005

One way to create a new database is to use the Add New Item dialog box in Visual Studio, which adds a SQL
Server Mobile database to your project and sets up a connection to the database in the Server Explorer window.
Visual Studio creates the database and then displays the Data Source Configuration Wizard, which you can use to
design a DataSet or SqlCeResultSet graphically to read and update data from tables in the database. At this
stage, you have created an empty database that contains no tables, and so you should close the wizard.

Alternatively, and perhaps more easily, you can create a database by using the Add Connection dialog box. Click
the Connect To Database icon at the top of the Server Explorer window, or click Connect To Database on the
Tools menu. In the Add Connection dialog box, as shown in Figure 3-1, first ensure that the Data Source box at
the top displays .NET Framework Data Provider for SQL Server CE. If it does not, click Change to open a dialog
box where you can select it. Then click Create to open the Create New SQL Server 2005 Compact Edition
Database dialog box. Note that creating a database in this way does not actually add it to your project, and so
you can use the Add Existing Item dialog box to navigate to the newly created database file and include it in
your project.

Figure 3-1. Using the Add Connection dialog box to create a new database

[View full size image]

Tip

After you have added a database to your project, you must ensure that the
database will be deployed to your target device. In the Properties dialog box, verify
that the Build Action property is set to Content and the Copy To Output Directory
property is set to Copy If Newer.

Options for Database Security

In the Create New Database dialog box, you must specify the path to the database and optionally select the
required sort order and/or specify a database password. If you set a password, you must include it in the

connection string every time you open a database connection, and so this password forms your first line of
defense against unauthorized access to the data in your database. In the examples in this chapter, we use the
database password MobileP@ssw0rd.

If you specify a password, you can also specify that the data in the database be encrypted. The database
password alone protects access to the database for usual methods of connection such as by using SQL Server
Management Studio, Visual Studio, or through code, but a determined attacker could still dump out the raw data
and so gain access to it; encryption provides a deterrent against such an attack.

Creating a Database Using SQL Server 2005 Management Studio

You can also create and modify Compact Edition databases in SQL Server 2005 Management Studio. To create or
connect to a SQL Server CE database, open the Connect To Server dialog box, and select SQL Server Compact
Edition in the Server Type drop-down list. Then, in the Database File text box, enter the path to an existing
database, or select <New Database...> from the drop-down list, as shown in Figure 3-2. If you select to create a
new database, the same Create New SQL Server 2005 Compact Edition Database dialog box that you see in
Visual Studio 2005 opens, which includes identical security options as described previously.

Figure 3-2. Connecting to a SQL Server CE database in SQL Server Management Studio

From a developer's point of view, nearly everything you can do with SQL Server CE databases using SQL Server
2005 Management Studio you can do in the Server Explorer window in Visual Studio 2005, and so for the rest of
this chapter, we concentrate mainly on using the tools built into Visual Studio.

Installing the SQL CE runtime on your target devices

To run an application that uses SQL Server CE, first you must install the runtime on the device.
During application development, Visual Studio automatically installs the run-time components onto
your development device or emulator the first time you debug an application that uses SQL Server
CE.

Important

All Windows Mobile 6–powered devices come with SQL Server CE
already installed, so the following instructions apply only to devices
running Windows CE or earlier versions of Windows Mobile.

The SQL Server CE runtime comes in three .cab files. If you need to get the run-time .cab files so
that you can install the runtime on a number of devices, you can do so in two different ways:

If you have Visual Studio 2005 installed, navigate to drive:\Program Files\Microsoft

Visual Studio 8\SmartDevices\SDK\SQL Server\Mobile\v3.0.

1.

If you have SQL Server 2005 installed, navigate to drive:\Program Files\Microsoft SQL

Server 2005 Mobile Edition\Device\Mobile\v3.0.

2.

Whichever method you choose, the directory structure is the same:

You will find the .cab files for devices that run Windows Mobile 2003 and Windows CE 4.0 in
the \wce400\armv4 folder. (Only Pocket PC targets with Advanced RISC Machines [ARM]
microprocessors are supported on Windows Mobile 2003.)

The .cab files for devices that run Windows CE 5.0 and Windows Mobile 5.0 are in the
\wce500\processor folder, where processor is one of the supported microprocessors, such as
armv4i, mipsii, or x86.

You need three .cab files:

The main runtime, called sqlce30.platform.wce5.processor.cab, where platform is phone for
smartphone, ppc for Pocket PC, and blank for Windows CE.

Replication support, called sqlce30.repl.platform.wce5.processor.cab. This cab contains
support for using Remote Data Access (RDA) or replication. (See Chapter 7 for more on
these technologies.)

Development support, including the Query Analyzer tool, which is in
sqlce30.dev.ENU.platform.wce5.processor.cab.

You can install the .cab files on devices by copying the files and opening them in File Explorer.

Connecting to an Existing Database

As you have seen, you can use the Connect To Database dialog boxes in both Visual Studio 2005 and SQL Server
Management Studio to connect to an existing database. That database can be in the file system on your
computer or on a network share on your local area network (LAN). However, the database can also be on a
mobile device that you currently have connected to your development computer using Microsoft ActiveSync
technology. If you look back at Figure 3-1, you can see that the dialog box offers a choice between a location on
My Computer or on an ActiveSync Connected Device. SQL Server Management Studio offers a similar ability to
connect to a device if you select the <Browse for more...> option in the Database File text box in the Connect To
Server dialog box.

This ability to connect to a database on a device is a welcome new feature in SQL Server 2005 Compact Edition.
You cannot do this with SQL CE 2.0 databases using the tools shipped with that version of the product, although
excellent third-party products exist that you can use to do this (and more!), including SQL CE Console from
Primeworks and RemoteSQLCe from GUI Innovations.

Warning

Be careful if you connect to a database that is on a device and modify tables and/or
data in the database during application development. Remember that you are not
modifying the version of the database that is included in your project, which is
more likely than not sitting in your project folder along with your code. Unless you
manually copy the modified database back to your computer and replace the copy
in your project folder, you risk losing your changes if you deploy the project to a
different device or deploy the project version over the modified version on your
development device.

Creating Tables, Indexes, and Foreign Keys

After you have created a database, you must create some tables in it. It is not a goal of this book to teach
database design, so for more information about basic database operations you can consult the Books Online for
Microsoft SQL Server 2005 or other information sources. However, to set the scene for later parts of this chapter,
we create two tables that happen to use many common features of a typical SQL Server CE database such as
foreign key relationships: one called ProductCategory that stores details of different categories in the fictional
Adventure-Works company product catalog and one called Product that contains details of individual products.

Creating a Table

In Visual Studio, open Server Explorer and expand the folders under the connection to your database. Right-click
the Tables folder, and click Create Table so that the Create Table dialog box opens.

In the New Table dialog box, shown in Figure 3-3, you can define the columns in a new table, in this case the
ProductCategory table, which has just two columns, ProductCategoryID and Name. The first thing to observe in
Figure 3-3 is how both columns have been set to disallow Null values, which means that if you try to store a
value in the database with a null value, the SQL CE runtime will throw an exception—an example of how you can
set constraints on the data in your database to ensure that it is not possible to store incorrect or invalid data.

Figure 3-3. Using the Edit Table dialog box to define the columns and primary key of a new table

[View full size image]

The second thing to observe is that the ProductCategoryID column is defined as a Primary key, meaning that the
database will create an index in this table to assist lookups using the ProductCategoryID value. Also, Unique is
set to true on both fields, meaning that a database constraint is applied to ensure that every record in this table
has a unique value in both fields. ProductCategoryID is also defined as an Identity field, meaning that each time
you add a new record to this table, the database will assign a unique value to this field. The Identity Seed is 1,
which is the value that is used for the very first record you add to this table, and Identity Increment is also 1 so
that for each subsequent record, the value assigned increments from the previous record by 1.

Create the Product table in a similar way. Set up the columns as follows:

ProductID: int, not null, unique, primary key, identity

Name: nvarchar(50), not null

Color: nvarchar(15), null

ListPrice: money, not null

Size: nvarchar(5), null

ProductCategoryID: int, not null

Creating a Foreign Key

The last column in the Product table is the ProductCategoryID, which cannot be null and clearly is intended to
match a valid ProductCategoryID in the ProductCategory table. This is an example of a foreign key, meaning that
for each Product record, the value stored in this column must match the ProductCategoryID of an existing record
in the ProductCategory table. You could write code in your application to check that this relationship is working
correctly, but it is much easier to let the database do the checking for you by setting up a foreign key.

The database design tools built into Visual Studio do not offer any direct way to create a foreign key, and so you
will have to execute a Transact-SQL (T-SQL) query against the database. If you have access to SQL Server
Management Studio, you can connect to the database and then create and execute a query such as the
following:

ALTER TABLE Product
ADD CONSTRAINT Product_ProductCategory_FK
FOREIGN KEY (ProductCategoryID) REFERENCES ProductCategory(ProductCategoryID)
ON DELETE CASCADE
ON UPDATE CASCADE

This query creates a foreign key constraint so that the database will not allow a value to be entered in the
ProductCategoryID column in the Product table that does not already exist in the ProductCategory table. The ON
DELETE CASCADE clause means that if a record in the master table (ProductCategory) is deleted, records in the
child table (Product) that referenced the ProductCategoryID of the deleted record are also deleted. ON UPDATE
CASCADE means that if the ProductCategoryID of a master record is changed to a new value, the
ProductCategoryID value in any child records is updated to match automatically. If you don't want this behavior,
you can use ON UPDATE NO ACTION (the default) instead of CASCADE.

If you do not have access to SQL Server Management Studio, you can use Visual Studio 2005 to execute a query,
although the technique for doing this is a little obtuse. Right-click your database in Server Explorer, and then
click New Query, which opens the Query Graphical Designer that you would typically use to build SELECT
statements to read data from the database. Close the Add Table dialog box, and then delete the SELECT FROM
statements in the query pane. Write your query here, right-click the query pane, and then click Execute SQL.

Two other courses of action are to execute the query using the Query Analyzer tool on the device or to write some
code to do it, such as that shown in Listing 3-1.

Listing 3-1. Creating Foreign Key Constraints in Code

using System;
using System.Data.SqlServerCe;
using System.IO;
using System.Reflection;

namespace MobileDevelopersHandbook
{
 class SetupForeignKey
 {
 public static void DefineKey()
 {
 // Set up the connection string.
 string databasePath = Path.GetDirectoryName(
 Assembly.GetExecutingAssembly().GetName().CodeBase);
 string connString = "Data Source=" + databasePath +
 "\\MyDatabase.sdf; Password=MobileP@ssw0rd";
 string commandText = "ALTER TABLE Product " +
 "ADD CONSTRAINT Product_ProductCategory_FK " +
 "FOREIGN KEY (ProductCategoryID) REFERENCES " +
 "ProductCategory(ProductCategoryID) " +
 "ON DELETE CASCADE " +
 "ON UPDATE CASCADE";

 using (SqlCeConnection conn = new SqlCeConnection(connString))
 {
 using (SqlCeCommand cmd = new SqlCeCommand(commandText, conn))
 {
 conn.Open();
 cmd.ExecuteNonQuery();
 conn.Close();
 }
 }
 }
 }
}

When you run this code the first time, it creates the foreign key constraint. If you run it a second time, you will
get a SqlCeException. You can learn how to find out what the error is in the section titled "Deciphering
SqlCeExceptions" later in this chapter.

Tip

You can use code such as that shown in Listing 3-1 to execute all sorts of queries,
not just to create foreign keys. You could even execute a series of data definition
language (DDL) queries using the CREATE DATABASE and CREATE TABLE
statements to create a new database in code.

Creating an Index

Developers often overlook one step in improving the performance of SQL Server CE databases. Consider the
foreign key that you just created. If your code has read a Product record and you want to find out the name of

the ProductCategory, you read the ProductCategoryID value from the Product record and look up the
corresponding record in the ProductCategory table. The ProductCategoryID field is the primary key of the
ProductCategory table, and SQL Server CE has built an index for it so that the lookup is very fast.

Consider the reverse operation, though. If you have a ProductCategory record and you want to find all the
Products that are in that product category, you need to find all records in the Product table that have a
ProductCategoryID that matches the value in the ProductCategory record. Although you created a foreign key
constraint linking these two tables, SQL Server CE did not create an index to help in the lookup you now want to
do. The only way that SQL Server CE can find the required records is to do a full table scan, as shown in Figure
3-4, which could take a long time if the Product table contains many thousands of records.

Figure 3-4. Lack of an index, which causes SQL Server CE to perform a full table scan

[View full size image]

It is good practice to create an index on the foreign key field in a child table to help with these common
searches. To do this in Visual Studio 2005, locate the Product table in Server Explorer, right-click Indexes, and
then click Create Index. In the New Index dialog box, shown in Figure 3-5, give the index a suitable name, and
click Add to select the column(s) that make up the index.

Figure 3-5. Creating a new index

[View full size image]

You should create indexes where appropriate to help lookup performance. Beware of overusing them, though,
because each index you create imposes extra work on the database: Every time you add a record, the database
must maintain the indexes in addition to adding the new record.

Deciphering SqlCeExceptions

The SQL Server CE runtime raises a SqlCeException when an operation fails. SqlCeException has an Errors
property of type SqlCeErrorCollection that always contains at least one SqlCeError instance describing the error
condition that has occurred. A SqlCeError object exposes more details of the error in its HResult, NativeError,
NumericErrorParameters, and ErrorParameters properties. For example, the following code (taken from SQL
Server 2005 Compact Edition [SSCE] Books Online) displays the full contents of a SqlCeException in a message
box:

private void DisplaySQLCEErrors(SqlCeException ex)
{
 SqlCeErrorCollection errorCollection = ex.Errors;

 StringBuilder bld = new StringBuilder();
 Exception inner = ex.InnerException;
 if (null != inner)
 {
 MessageBox.Show("Inner Exception: " + inner.ToString());
 }
 // Enumerate the errors to a message box.
 foreach (SqlCeError err in errorCollection)
 {
 bld.Append("\n Error Code: " + err.HResult.ToString("X"));
 bld.Append("\n Message : " + err.Message);
 bld.Append("\n Minor Err.: " + err.NativeError);
 bld.Append("\n Source : " + err.Source);

 // Enumerate each numeric parameter for the error.
 foreach (int numPar in err.NumericErrorParameters)
 {
 if (0 != numPar) bld.Append("\n Num. Par. : " + numPar);
 }

 // Enumerate each string parameter for the error.
 foreach (string errPar in err.ErrorParameters)
 {
 if (String.Empty != errPar)
 bld.Append("\n Err. Par. : " + errPar);
 }

 MessageBox.Show(bld.ToString());
 bld.Remove(0, bld.Length);

 }
}

The SqlCeException object also has Message and NativeError properties that are set to the same values as the
properties of the same name in the first SqlCeError object in the Errors collection; this is a change from SQL CE
2.0, where you must interrogate the Errors collection to find the real cause of an error because the
SqlCeException object does not set these properties.

The cause of an error is usually clear to the developer from the Message property, but if you want to identify
specific errors programmatically, instead of searching for specific text in the Message property, it is better to read
the NativeError and HResult properties. If you want to investigate the cause of an error further, the best resource
for finding out more is the Troubleshooting book in the SQL Server Compact Edition (SSCE) Books Online, which
lists the error numbers and their meanings. (You can find Books Online by clicking the Start menu, pointing to
All Programs, and looking under Microsoft SQL Server 2005 Compact Edition.) For example, if you run the
CreateForeignKey sample shown previously in Listing 3-1, and click the Create Key button twice, the second click
raises a SqlCeException with a NativeError property of 25083 and the message "The referential relationship will
result in a cyclical reference that is not allowed. [Constraint name = Product_ProductCategory_FK]." The
message is fairly clear in this case, but if you look up 25083 in the Troubleshooting book in Books Online, you
will find that the error is accompanied by a string parameter that gives the name of the constraint concerned.
Knowing this, you might code an exception handler as follows to display a friendly message if the foreign key
already exists:

private const int SSCE_M_CYCLEDETECTED = 25083;

private void button1_Click(object sender, EventArgs e)
{
 try
 {
 SetupForeignKey.DefineKey();
 MessageBox.Show("Foreign Key Created!");
 }
 catch (SqlCeException ex)
 {
 // Display friendly message if the foreign key already exists.
 if ((ex.NativeError == SSCE_M_CYCLEDETECTED) &&
 (ex.Errors[0].ErrorParameters[0] == "Product_ProductCategory_FK"))
 {
 MessageBox.Show("Key already exists. Continuing...");
 }
 else
 {
 // Display detailed error message.
 DisplaySQLCEErrors(ex);
 }
 }
}

Note

The SQL Server CE managed libraries do not provide an enumeration for all the
error codes that you can use to refer to them using their SSCE_M_* symbolic name.
You must refer to the documentation to determine the correct values and then
define your own constants, as shown in the preceding code example.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Creating Connections to Data in Your Project

Visual Studio 2005 introduces the concept of a project data source. In Visual Studio .NET 2003, you can drag a
table from Server Explorer and drop it onto a form, and it automatically generates a data-bound user interface
(UI), using a Datagrid control. In Visual Studio 2005, you must first create a project data source and then bind
your controls to it. The data source can be created from tables in a database, from data returned from a Web
service, or from any object that exposes one or more public properties. Compared with Visual Studio .NET 2003,
the use of project data sources in Visual Studio 2005 gives you much more flexibility in the data to which you
can bind and the way Microsoft Windows Forms controls in your GUI bind to data.

Creating a Project Data Source

The easiest way to work with data sources is through the Data Sources dialog box. You can open this dialog box
by clicking Show Data Sources on the Data menu. A new project does not have any existing data sources, and so
you can create a data source by clicking the Add Data Source link in the dialog box. You can have as many data
sources as you want in a project; add data sources by clicking the icon at the top of the dialog box or click Add
New Data Source on the Data menu.

With the Data Source Configuration Wizard, you can choose between database, Web service, or object as the
source of your data, as shown in Figure 3-6. Choose Database to bind to the SQL Server CE database you created
earlier in this chapter. You can learn more about working with Web services in Chapter 7.

Figure 3-6. Data Source Configuration Wizard

[View full size image]

The wizard then asks you for the database from which it should get the data. You can select an existing
connection to a database that you created earlier or browse to a new database to create a new connection. If the
database you select is not already in your project, Visual Studio detects this and helpfully asks if it should add
the database. If you add a connection to a database that requires a password, Visual Studio detects that as well
and displays the message: "This connection string appears to contain sensitive data (for example, a password)

which is required to connect to the database. However storing sensitive data in the connection string can be a
security risk. Do you want to include sensitive data in the connection string?" Visual Studio is warning you here
that if you continue, it will generate code that includes the database password hard coded into the database
connection string, which constitutes a security risk. We advise you to ignore the warning for now and reply Yes;
otherwise, the visual designer tools will prompt you for the password every time you try to connect to your
database.

Warning

Do not be tempted to leave database passwords in clear text in your code. Your
code can be decompiled and the password can be uncovered by an attacker. See
Chapter 10, "Security Programming for Mobile Applications," for advice on how to
make the database password available to your application code in a secure way.

Next, the Data Source Configuration Wizard displays the Choose Your Database Objects page on which you select
the tables and/or views to include in the data source. This is actually the first stage of building a strongly typed
DataSet and SqlCeResultSet, which are objects you use to work with data in a SQL Server CE database. The
SqlCeResultSet generally gives faster access to data than a DataSet can, although with some reduction in
flexibility for the programmer, as explained in the section titled "Which Data Source: DataSet or
SqlCeResultSet?" later in this chapter.

What is a strongly typed DataSet?

A strongly typed DataSet is an object that inherits from System.Data.DataSet but exposes
additional properties that represent the table schema to which it is strongly typed. For example, if a
DataSet instance called myDataSet contains two tables that store data from the Orders and
OrderDetails tables in a database, in a System.Data.DataSet you can get a reference to the
contained tables by indexing the Tables collection, for example, myDataSet.Tables[0] and
myDataSet.Tables[1]. In a strongly typed DataSet, you can get a reference using intuitive names
such as myDataSet.Orders and myDataSet.OrderDetails.

The visual designer tools in Visual Studio such as the DataSet Designer make it easy to generate
strongly typed DataSet and SqlCeResultSet objects. The DataSet Designer also generates strongly
typed TableAdapter objects that expose methods such as Fill, which fills a table in the DataSet with
data read from the database, and Update, which updates the database using data in a DataSet
table.

Designing and Programming Strongly Typed DataSets and SqlCeResultSets

The Data Source Configuration Wizard displays the Choose Your Database Objects page, where you select the
tables and/or views to include in the data source (shown in Figure 3-7), and then builds a strongly typed
DataSet or SqlCeResultSet object that it adds to your project in the form of an XML schema (.xsd file).

Figure 3-7. Selecting tables and/or views to include in a strongly typed DataSet

[View full size image]

Tip

You can select a subset of the columns in a database table on the Choose Your
Database Objects page. This selection is honored in a typed DataSet object, but if
you generate a SqlCeResultSet object, you will get all of the columns in the table.
This is because the SqlCeResultSet by default uses a Table Direct mode, which
bypasses the SQL Server CE Query Processor and is therefore highly performing but
at the cost of a reduction in flexibility.

You can override this default behavior so that you can use complex queries with a
SqlCeResultSet to select a subset of columns or columns from more than one table,
but then you do not enjoy the raw speed of Table Direct mode. To find out how, see
the section titled "Using Strongly Typed DataSets and SqlCeResultSets with Queries
That Use Joins" later in this chapter.

The DataSet or SqlCeResultSet is the object that encapsulates your access to the data in the database. By
default, Visual Studio creates a strongly typed DataSet, but if you want to create a SqlCeResultSet instead, you
simply select the .xsd file in Solution Explorer and in the Properties dialog box change the custom tool to
MSResultSetGenerator (shown in Figure 3-8). If you click the Show All Files icon at the top of Solution Explorer
and then open the .Designer.cs (or .vb) file that is normally a hidden child of the .xsd, you can see the
tool-generated code for both the DataSet and the SqlCeResultSet. If you want to generate both a strongly typed
DataSet and a SqlCeResultSet at the same time, change the custom tool property to
MSDataSetResultSetGenerator. Admittedly, the times that you would want to generate both a strongly typed
DataSet and a strongly typed SqlCeResultSet for the same source data in the database will be few, but
occasionally you might want to create a SqlCeResultSet for fast, direct access to the data (perhaps when binding
to a DataGrid, as explained later in this chapter) and also create a DataSet instance that you would use when you
need an object that takes a copy of the data in the database, for example, for sending over the network in a Web
service call.

Figure 3-8. Changing the code generator tool

[View full size image]

In Figure 3-8, you can also see the DataSet Designer displayed in the main workspace. You can open this window
either by double-clicking the .xsd file in Solution Explorer or by clicking the Edit DataSet With Designer icon at
the top of the Data Sources dialog box. With this graphical designer, you can drag in additional tables or views
from the database shown in Server Explorer, edit existing queries, or you can right-click the design surface to
open a menu of options, including designing a new query on data in the database.

In Figure 3-8, notice how the Data Source Configuration Wizard has detected the foreign key relationship
between the Products and the ProductCategory tables and represents it graphically in the designer. This
relationship, and the TableAdapter objects that are used to transfer data between the database and the DataSet
(represented graphically in Figure 3-8 by the information at the foot of each table), are visual representations of
programmable objects that are accessible through properties of the DataSet object but not the SqlCeResultSet
object. You can see this for yourself if you expand the node for the .xsd file in Solution Explorer and then open
the .Designer.cs/.vb file exposed beneath. This is the code that the visual tools generate and that defines the
strongly typed DataSet or SqlCeResultSet that you program against. If you change the code generator tool to the
MSResultSetGenerator, the visual appearance of the DataSet Designer does not change even though you will not
find any foreign key or TableAdapter objects in the generated code.

Which Data Source: DataSet or SqlCeResultSet?

Both a DataSet and a SqlCeResultSet are suitable to be used as the data source for a data-bound GUI or as a
means of manipulating data in a database, but that is where the similarities end. The DataSet object is
functionally very rich and can store data in DataTable objects, each of which consists of a collection of
DataColumn objects, with data records represented by DataRow objects. A DataSet can impose constraints on
data you store in the tables, such as requiring all values in a column to be nonnull or unique, and can represent
relationships such as foreign keys, in fact, very like a relational database. It also has the ability to remember the
values in each row at the time the row was filled with data from the database and can separately store the new
values after a row is updated.

A SqlCeResultSet is quite different. It does not store data, it is a lightweight object that you can use to read data
that comes directly from the database, and you can also use it to update data directly in the database.

Figure 3-9 shows the difference. The DataSet model is the same as used by many distributed applications built
with the full .NET Framework. A DataSet is designed to be used in situations where you use a TableAdapter
object to copy some data from a database and store it in an object and then close the connection to the
database. You can then ship that object (the DataSet) somewhere else, perhaps to a remote client by using Web
Services or .NET Remoting, or you can even persist it to a file and transfer it manually to the other side of the
world (well, not seriously—but the architecture does allow it), and then the remote client can make some
changes to the data and ship it back again. Back in your data access logic code, you use the TableAdapter object
to identify changed rows in the DataTable objects in the DataSet and write the changed values back into the
database. This update is usually protected by a technique called optimistic concurrency, which means that the
update logic uses the original data values stored in the DataSet to check that the target row has not been
changed by someone else while you were off updating the DataSet. If it has been changed by someone else, the
update fails, ensuring that updates from different clients cannot overwrite each other.

Figure 3-9. The difference—in a data-bound GUI—between reading and updating data using a
DataSet and a SqlCeResultSet

[View full size image]

That architecture is fine, and if you want to send data to a remote system over a Web Service call, it is still a
good choice. However, on memory-constrained devices such as handheld devices, if all you want to do is show or
update some data in a GUI, it is pretty wasteful to go to the trouble of using a heavyweight object such as a
DataSet, which exhibits many of the characteristics of a relational database, when the database is sitting there
begging to be used!

This is what a SqlCeResultSet is good for. A SqlCeResultSet is an object that you can use to query some data
from a database, read it, and bind it to a GUI control such as a DataGrid, and also (as long as the source data is
from a single table) update it. You are working directly with the database, using something called a server-side
cursor (when you use a DataTable in a DataSet, you work with a client-side cursor). You should use a
SqlCeResultSet whenever you can unless you specifically need the advanced features of a DataSet.

Working with Strongly Typed DataSets and SqlCeResultSets

So that you can compare the coding experience between the two objects, following are two examples that are
functionally equivalent. The code reports the number of records in the ProductCategory and Product tables, adds
two ProductCategory records, ensures that no duplicate records can be created, and then adds two Product
records that are in the ProductCategory table with an ID of 1. You can find a full program that includes this code
in the downloadable code samples on this book's companion Web site.

The first code listing, Listing 3-2, uses a DataSet.

Listing 3-2. Reading Records and Adding New Records Using a DataSet

using System.Data;
using System.Text;
...
private void DoStuffWithDataSet()
{
 // Create an instance of the strongly typed DataSet.
 ProductsDataSet productsDS = new ProductsDataSet();

 // Create a table adapter for product categories
 ProductsDataSetTableAdapters.ProductCategoryTableAdapter catTA =
 new ProductsDataSetTableAdapters.ProductCategoryTableAdapter();
 // ... and for products.
 ProductsDataSetTableAdapters.ProductTableAdapter prodTA =
 new ProductsDataSetTableAdapters.ProductTableAdapter();

 // FIRST: Get any existing data in these tables from the database.

 // Fill the ProductCategory table in the DataSet with data from the
 // database
 catTA.Fill(productsDS.ProductCategory);
 // ... and the products.
 prodTA.Fill(productsDS.Product);

 // Report count of records to the screen....
 ReportRecords(productsDS);

 // SECOND: Add some product categories.
 // To make sure you don't duplicate names, productCategory.Name has a
 // unique constraint.
 try
 {
 productsDS.ProductCategory.AddProductCategoryRow(
 "Rock Climbing Equipment");
 productsDS.ProductCategory.AddProductCategoryRow(
 "Scuba Diving Equipment");

 // Update to write changes back to the database.
 catTA.Update(productsDS.ProductCategory);
 textBox1.Text += "\r\nProduct Categories added.\r\n";
 }
 catch (ConstraintException)
 {
 // If the categories already exist, just continue.
 textBox1.Text += "\r\nProduct Category addition failed, "
 + "items already exist.\r\n";
 }

 // THIRD: Add some products in the category with categoryID of 1.
 ProductsDataSet.ProductCategoryRow prodCatRow =
 productsDS.ProductCategory.FindByProductCategoryID(1);
 productsDS.Product.AddProductRow(
 "Contoso Single Rope", "Red/Blue", 155.95M, "60m", prodCatRow);
 productsDS.Product.AddProductRow(
 "Contoso Rock Shoes", "Black", 89.95M, "8", prodCatRow);

 // Write to database.
 prodTA.Update(productsDS.Product);
 textBox1.Text += "\r\nProducts added.\r\n";

 // Report count of records to screen....
 ReportRecords(productsDS);
}

private void ReportRecords(ProductsDataSet productsDS)
{
 StringBuilder sb = new StringBuilder(textBox1.Text);
 sb.Append("There are currently ");
 sb.Append(productsDS.ProductCategory.Rows.Count);
 sb.Append(" product categories.\r\n");
 sb.Append("There are currently ");
 sb.Append(productsDS.Product.Rows.Count);
 sb.Append(" products.\r\n");
 textBox1.Text = sb.ToString();
}

The code is well commented and so should be fairly self-explanatory. However, note the following points:

You do not have to do any management of the database connection. The TableAdapter Fill and Update
methods both open the connection to the database before they execute and then close it again at the end.

In the code that follows the comment that starts "SECOND," notice that there is some code that catches a
System.Data.ConstraintException. If you execute this code more than once, the ProductCategory records
will already exist, and when you try to add them to the DataTable (the two calls to the
AddProductCategory method at the start of this section), the ConstraintException is thrown. The important
thing to understand here is that when you create the strongly typed DataSet by dragging in the tables
from the database, the tools detect the unique constraints and foreign key constraints and configure the
DataSet with these constraints also. The DataSet mimics the behavior of the database.

Now examine Listing 3-3, which implements the same functionality but by using a strongly typed
SqlCeResultSet.

Listing 3-3. Reading Records and Adding New Records Using a Strongly Typed SqlCeResultSet

using System.Data;
using System.Data.SqlServerCe;
using System.Text;
...
private const int SSCE_M_KEYDUPLICATE = 25016;

private void DoStuffWithResultSet()
{
 using (ProductsResultSetResultSets.ProductCategoryResultSet prodCatRS =
 new ProductsResultSetResultSets.ProductCategoryResultSet())
 {
 using (ProductsResultSetResultSets.ProductResultSet productRS =
 new ProductsResultSetResultSets.ProductResultSet())
 {
 try
 {
 // Report count of records to the screen....
 ReportRecords(prodCatRS.Connection, productRS);

 // SECOND: Add some product categories.
 // To make sure you don't duplicate names,
 // productCategory.Name has a unique constraint.
 try
 {
 prodCatRS.AddProductCategoryRecord(
 "Rock Climbing Equipment");
 prodCatRS.AddProductCategoryRecord(
 "Scuba Diving Equipment");
 textBox1.Text += "\r\nProduct Categories added.\r\n";
 }
 catch (System.Data.SqlServerCe.SqlCeException sqlEx)
 {
 if (sqlEx.NativeError == SSCE_M_KEYDUPLICATE)
 {
 // If the categories already exist, just continue.
 textBox1.Text += "\r\nProduct Category addition "
 + "failed, items already exist.\r\n";
 }
 else
 {
 throw;
 }
 }

 // THIRD: Add some products in the category with categoryID 1.
 productRS.AddProductRecord(
 "Contoso Single Rope", "Red/Blue", 155.95M, "60m", 1);
 productRS.AddProductRecord(
 "Contoso Rock Shoes", "Black", 89.95M, "8", 1);
 textBox1.Text += "\r\nProducts added.\r\n";
 // Report count of records to the screen....
 ReportRecords(prodCatRS.Connection, productRS);
 }
 finally
 {
 // Close the DataReaders.
 productRS.Close();
 prodCatRS.Close();
 // Close and dispose of the database connections.
 productRS.Connection.Close();
 prodCatRS.Connection.Close();
 // Explicitly dispose of the connection objects
 // because the tool-generated code fails to do so.
 productRS.Connection.Dispose();
 prodCatRS.Connection.Dispose();
 }
 }
 }
}

private void ReportRecords(SqlCeConnection conn,
 ProductsResultSetResultSets.ProductResultSet productRS)
{

 int categoryCount;
 // One way of counting the records is to ask the database.
 using(SqlCeCommand cmd = new SqlCeCommand(
 "SELECT COUNT(*) FROM ProductCategory", conn))
 {
 categoryCount = (int)cmd.ExecuteScalar();
 }

 // Alternatively, get count by casting the ResultSet to IListSource.
 int productCount = ((IListSource)productRS).GetList().Count;

 StringBuilder sb = new StringBuilder(textBox1.Text);
 sb.Append("There are currently ");
 sb.Append(categoryCount);
 sb.Append(" product categories.\r\n");
 sb.Append("There are currently ");
 sb.Append(productCount);
 sb.Append(" products.\r\n");
 textBox1.Text = sb.ToString();
}

In comparing the two examples, you should see that the code to work with the SqlCeResultSet is simpler
because you do not have to work through an intermediate data container such as the DataSet. You should note
the following points about Listing 3-3:

Unlike a TableAdapter, with a SqlCeResultSet you are responsible for writing code to open and close the
connection to the database. In fact, there is no code in Listing 3-3 to open the connection because that is
done for you automatically by the constructor of the tool-generated strongly typed SqlCeResultSet (look at
the constructor and the Open method in ProductsResultSet.Designer.cs). However, you must provide code
to close and dispose of the connection.

A SqlCeResultSet subclasses a SqlCeDataReader, and as with a DataReader, you must close it and dispose
of it when you are finished with it. The finally{...} block in the code closes the SqlCeResultSet objects
(and closes the database connections), while the using clauses around all the code in the
DoStuffWithResultSet method ensure their disposal.

As with a SqlCeDataReader, the SqlCeResultSet does not directly expose a Count property for you to find
the number of records that will be read. One way of finding out how many rows there will be is to issue a
SELECT COUNT(*) query to the database separately, as shown in the ReportRecords method.
Alternatively, because SqlCeResultSet implements IListSource, you can use the following code to find the
count of records:

((IListSource)productRS).GetList().Count

Note that when you use a TableAdapter object to fill a DataTable in a DataSet, it reads all the records from
the database and copies them into the DataTable, after which getting the record count is simple. The real
performance advantage of a SqlCeResultSet is the fact that you do not have to read all the records into it
before starting to read records. However, the internal implementation of the SqlCeResultSet.GetList()
method must traverse the entire result set to determine the record count, so you lose some of that
performance advantage. If the SqlCeResultSet returns a large number of records, it may be more efficient
to execute a SELECT COUNT(*) query to establish the record count before you start reading the records.

Of course, this simple example only scratches the surface of how to work with a SqlCeResultSet and doesn't
describe how to use a simple SqlCeResultSet, one that has not been subclassed and extended by the Data
Designer tools.

Fixing the SqlCeResultSet

Unfortunately, the code for the typed SqlCeResultSet that the tools generate has a bug in it, so here's a warning
to make this point as clearly as possible:

Caution

Do not use a typed SqlCeResultSet that has been generated by the tools unless you
extend it to add your own constructor and override the tool-generated Open
method. In Visual Studio 2005, the tool-generated code has a default constructor
that calls the Open method, which creates a SqlCeCommand object but does not
dispose of it after the call to ExecuteResultSet. This is a bug, and if you create
many instances of one of these classes in your application, eventually you will get a
Memory Exceeded exception from the SQL Server CE engine. This bug was not fixed
in Visual Studio 2005 SP1.

If you locate the constructor for the typed SqlCeResultSet in <yourResultSetName>.Designer.cs, you find code
similar to Listing 3-4.

Listing 3-4. Tool-Generated Code for a Strongly Typed SqlCeResultSet

public ProductsCategoryResultSet() {
 // Create default options.
 //
 resultSetOptions = System.Data.SqlServerCe.ResultSetOptions.Scrollable;
 resultSetOptions =
 (resultSetOptions | System.Data.SqlServerCe.ResultSetOptions.Sensitive);
 resultSetOptions =
 (resultSetOptions | System.Data.SqlServerCe.ResultSetOptions.Updatable);
...
 // Call Open() to initialize the ResultSet.
 //
 this.Open();
}

public void Open() {
 System.Data.SqlServerCe.SqlCeCommand sqlCeSelectCommand;
 // Open a connection to the database.
 //
 sqlCeConnection = new
 System.Data.SqlServerCe.SqlCeConnection(this.resultSetConnectionString);
 sqlCeConnection.Open();
 // Create the command.
 //
 sqlCeSelectCommand = sqlCeConnection.CreateCommand();
 sqlCeSelectCommand.CommandText = "ProductsCategory";
 sqlCeSelectCommand.CommandType = System.Data.CommandType.TableDirect;
 // Generate the ResultSet.
 //
 sqlCeSelectCommand.ExecuteResultSet(this.resultSetOptions, this);
}

Notice how the constructor calls the Open method, and how the Open method creates a SqlCeCommand object
and then calls ExecuteResultSet to generate the result set? Unfortunately, that SqlCeCommand object is never
disposed of, which causes a memory leak.

To overcome this limitation, you must extend the typed SqlCeResultSet that the tools generated. Fortunately,
the tools generated it as a partial class, so you can simply view the SqlCeResultSet in the DataSet Designer
window, right-click the background, and then click View Code to open a class file where you can add your own
customizations.

To extend the SqlCeResultSet, add your own override of the constructor and a new implementation of Open
(called OpenEx), such as that shown in Listing 3-4. The new version of the constructor takes two parameters:

bool openTable If set to true, the constructor calls the default implementation of Open to read the table in
TableDirect mode. If false, it does not call Open.

string connString The database connection string.

The new version of Open is called OpenEx and is functionally identical, apart from the fact that it correctly
disposes of the SqlCeCommand object (by virtue of the using statement). This new version also implements
IDisposable so that when you dispose of the typed SqlCeResultSet, it also disposes of the SqlCeConnection
object, and you don't have to explicitly do this yourself, as you did in Listing 3-3. Listing 3-5 shows the code to
extend the ProductsCategoryResultSet from the sample application. You should create a similar class to extend
each of the strongly typed SqlCeResultSets in your applications.

Listing 3-5. Extending the Strongly Typed SqlCeResultSet to Correctly Dispose of Dependent
Objects

namespace MobileDevelopersHandbook.JoinQueryResultSetResultSets
{
 using System;
 using System.Data;
 using System.Data.SqlServerCe;

 partial class ProductsCategoryResultSet : IDisposable
 {
 /// <summary>

 /// Calling this method with an openTable value of true provides
 /// the same behavior as using the default constructor.
 /// </summary>
 /// <param name="openTable">Open the result set</param>
 /// <param name="connString">Connection string to the database</param>
 public ProductsCategoryResultSet(bool openTable, string connString)
 {
 resultSetOptions = ResultSetOptions.Scrollable |
 ResultSetOptions.Sensitive | ResultSetOptions.Updatable;
 resultSetConnectionString = connString;
 if (openTable)
 this.Open();
 }

 /// <summary>
 /// Use only with TableDirect mode. ResultSet will contain those
 /// records.
 /// </summary>
 public void OpenEx()
 {
 using (SqlCeCommand sqlCeSelectCommand =
 CreateConnectionAndCommand())
 {
 sqlCeSelectCommand.CommandText = "ProductCategory";
 sqlCeSelectCommand.CommandType =
 System.Data.CommandType.TableDirect;

 sqlCeSelectCommand.ExecuteResultSet(ResultSetOptions, this);
 }
 }

 /// <summary>
 /// Creates a connection, opens it, and factories a command instance
 /// from the connection
 /// </summary>
 /// <returns></returns>
 protected SqlCeCommand CreateConnectionAndCommand()
 {
 sqlCeConnection = new
 System.Data.SqlServerCe.SqlCeConnection(resultSetConnectionString);
 sqlCeConnection.Open();

 return sqlCeConnection.CreateCommand();
 }
 }

 public new void Dispose()
 {
 if (this.Connection != null)
 {
 this.Connection.Dispose();
 }
 base.Dispose();
 }
}

To call this, update the original code in Listing 3-3 as follows:

private void DoStuffWithResultSet()
{
 string conn = "Data Source ="
 + (System.IO.Path.GetDirectoryName(System.Reflection.
 Assembly.GetExecutingAssembly().GetName().CodeBase)
 + "\\MyDatabase.sdf\\; Password =\"MobileP@ssw0rd\";");

 // Create the ResultSets using our own constructor to override the
 // default behavior.
 using (ProductsResultSetResultSets.ProductCategoryResultSet prodCatRS =
 new ProductsResultSetResultSets.ProductCategoryResultSet(false, conn))
 {
 using (ProductsResultSetResultSets.ProductResultSet productRS =
 new ProductsResultSetResultSets.ProductResultSet(false, conn))
 {
 try

 {
 // Open the two ResultSets.
 prodCatRS.OpenEx();
 productRS.OpenEx();

 // Report count of records to the screen....
 ReportRecords(prodCatRS.Connection);
 ...
 }
 finally
 {
 // Close the DataReaders.
 productRS.Close();
 prodCatRS.Close();
 // Close the database connections.
 productRS.Connection.Close();
 prodCatRS.Connection.Close();
 }
 }
 }
}

Warning

The preceding code uses a hard-coded database password and is shown that way
for brevity only. Do not hard-code passwords into your own applications! See
Chapter 10 for advice on how to protect passwords and other sensitive data in your
applications.

Enabling Insert, Update, and Delete in Strongly Typed DataSets and SqlCeResultSets

In Listing 3-2, you use a strongly typed DataSet to both read records from the database and insert new records.
In Listing 3-3, you do the same operations with a SqlCeResultSet. You can use strongly typed DataSet and
SqlCeResultSet objects to read, create, insert, and delete database records only if that object describes columns
from a single database table.

Updating the Database with a DataSet

Look at Figure 3-8 again: You can see that there are two separate tables represented in the
DataSet/SqlCeResultSet, one for Products and one for ProductCategory. The Products table contains columns only
from the products table in the database, and the ProductCategory table contains columns that are found only in
the corresponding table in the database. When you drag a table directly from Server Explorer onto the Data
Designer, as you did to build these objects, what you are really doing is defining a database query that performs
a T-SQL SELECT statement on the columns in only that table. With such a simple query, the tools can generate
corresponding INSERT, UPDATE, and DELETE statements. You can see the generated statements if you go to the
Data Designer window, select one of the TableAdapter objects, and then go to the Properties dialog box (as
shown in Figure 3-10); you can see the SelectCommand, InsertCommand, DeleteCommand, and
UpdateCommand properties that contain the T-SQL commands that the TableAdapter object uses to interact with
the database.

Figure 3-10. Viewing the TableAdapter properties that contain the T-SQL commands

[View full size image]

When you call the TableAdapter.Fill method, it executes a T-SQL SELECT statement to read the data from the
database using the data in the SelectCommand property and loads it into the DataTable in the DataSet. It closes
the connection to the database, and now your application code works with the data in the DataTable, displaying
the data and possibly updating or deleting records, or inserting new records.

Whenever you update, insert, or delete records in a DataTable, the DataTable records this activity by setting the
RowState of the affected row to DataRowStatus.Modified, DataRowState.Added, or DataRowState.Deleted,
respectively. Unchanged rows have a RowState of DataRowStatus.Unchanged. When you call the
TableAdapter.Update method, the TableAdapter object first finds all rows in the source DataTable in the DataSet
that have the RowState DataRowStatus.Deleted, and then uses the DeleteCommand to delete the corresponding
record in the database. It then finds all rows in the DataTable with the RowState DataRowStatus.Inserted and
uses the command in the InsertCommand property to insert the record into the database. Finally, it finds rows
with the status DataRowStatus.Updated and uses the UpdateCommand to update the database rows.

All this happens for you "under the covers" so that the code to read records from the database and then later to
update the database is not much more complex than a call to the Fill and Update methods of the relevant
TableAdapter is, as you can see in Listing 3-1.

Tip

Many developers who are starting out with DataSets make the mistake of making
changes to data in a DataTable and then calling the AcceptChanges method of the
DataSet before calling the TableAdapter.Update method. What AcceptChanges
actually does is set the RowState of every row to DataRowState.Unchanged. If you
call TableAdapter.Update after you have accepted changes, the TableAdapter will
not be able to discover which rows have changed and so is unable to make any
changes to the database.

However, the AcceptChanges method can be useful in certain circumstances, for
example, when you want to send a DataTable you have built in code to another
component and then discover the changes yourself when it is returned.

Updating the Database with a SqlCeResultSet

As with the strongly typed DataSet, you can use a strongly typed SqlCeResultSet to insert, delete, and update
records in the database—but only if the SqlCeResultSet performs a query on a single database table. If the query
involves a JOIN across multiple tables, you can use a SqlCeResultSet (or a DataSet) only to read records, not
update them; how you do this is explained in the next section.

You have already seen in Listing 3-2 how to insert a record. The tool-generated strongly typed SqlCeResultSet
provides a convenient Add<table>Record method with arguments appropriate to that record. For example, the
code to add a record to the Product table from Listing 3-2 is

 productRS.AddProductRecord(
 "Contoso Single Rope", "Red/Blue", 155.95M, "60m", 1);

If you go to the definition of this method (in Visual Studio, right-click the code that calls this method, and then
click Go To Definition), you can see what the tool-generated code does:

 public void AddProductRecord(string Name, string Color,
 decimal ListPrice, string Size, int ProductCategoryID) {
 System.Data.SqlServerCe.SqlCeUpdatableRecord newRecord =
 base.CreateRecord();
 newRecord["Name"] = Name;
 newRecord["Color"] = Color;
 newRecord["ListPrice"] = ListPrice;
 newRecord["Size"] = Size;
 newRecord["ProductCategoryID"] = ProductCategoryID;
 base.Insert(newRecord);
 }

As you can see, it creates a SqlCeUpdateableRecord by calling base.CreateRecord(), where base in this case is
the parent class, which is a SqlCeResultSet. Then it sets the values in the correct columns and calls the Insert
method of the SqlCeResultSet to insert it into the database.

Deleting records is very simple. Again, the tools have generated a method for this action in the strongly typed
SqlCeResultSet:

 public void DeleteRecord() {
 base.Delete();
 }

To update a record, you simply position the cursor at the required record using a call to Read (which reads the
next record in sequence) or ReadAbsolute (which reads a specific record by index number), make your changes,
and then call the SqlCeResultSet.Update method. For example:

// Create a typed SqlCeResultSet.
using (ProductsResultSetResultSets.ProductResultSet productRS =
 new ProductsResultSetResultSets.ProductResultSet())
{
 try
 {
 // Update the third record.
 productRS.ReadAbsolute(3);
 productRS.Name = "Contoso Half Rope";
 productRS.ListPrice = 129.95M;
 productRS.Size = "70m";

 // Write changes to the database.
 productRS.Update();
 }
 finally
 {
 // Close the DataReader.
 productRS.Close();
 // Close and dispose of the database connection.
 productRS.Connection.Close();
 productRS.Connection.Dispose();
 }
}

Using Strongly Typed DataSets and SqlCeResultSets with Queries That Use Joins

You can use the Data Designer tools to create DataSet or SqlCeResultSet objects that encapsulate queries to the
database that read data from more than one table by using a JOIN to retrieve a value from one table using a key
value supplied in a different table. The resulting record set combines data from two or more tables.

For example, say you want to display a list of products, but instead of showing the Product.CategoryID, you want
to display the actual name of the product category. You can build a project data source that encapsulates the
correct database query in the following way:

Creating a Project Data Source That Makes a Complex Query

1. You can create a new query in a new DataSet or SqlCeResultSet or inside an existing data source.

a. To create a new DataSet or SqlCeResultSet, click Add New Item on the Project menu, and
then select a DataSet in the Add New Item dialog box. When the Data Designer window opens,

right-click the background and click Add Table Adapter. (Don't choose Add Query because that

does not give you the option of designing a query that returns rows, only a single value.)

Change the Custom Tool to MSDataSetGenerator or MSResultSetGenerator to determine what

kind of data source you want, as you did earlier in this chapter.

b. To create a new query inside an existing data source, select an existing data source in the

Data Sources dialog box, and click the Edit DataSet With Designer icon at the top of the dialog

box. Then right-click the background of the Data Designer window and click Add Table Adapter.

Note that if this is a DataSet, the tool will generate a new DataTable inside the DataSet to store

the results of this query in addition to the existing DataTables.

Caution

If your existing data source is a SqlCeResultSet, the tool will generate a new
typed SqlCeResultSet that is supposed to allow you to access the record set
resulting from the query. However, the tools do not do a great job here, and
you must do some additional coding to get this to work. See the section titled
"Complex Queries and SqlCeResultSets" later in this chapter for more
information.

2. The TableAdapter Configuration Wizard opens. On the first page, select the database connection. The

second page is titled Choose A Command Type and offers two options: Use SQL Statements and Use

Existing Stored Procedure. SQL Server CE does not support stored procedures, so select Use SQL

Statements.

3. On the third page of the TableAdapter Configuration Wizard, you can enter your query. For example,

to enter a query to return rows from the Product table but include the Category Name instead of the

CategoryID, you would enter the following:

SELECT Product.ProductID, Product.Name, Product.Color, Product.ListPrice,
 Product.Size, ProductCategory.Name AS CategoryName
FROM Product, ProductCategory
WHERE Product.ProductCategoryID = ProductCategory.ProductCategoryID

(See Figure 3-11.)

Figure 3-11. Entering a T-SQL query in the TableAdapter Configuration Wizard

[View full size image]

More Info

If you find T-SQL syntax confusing, don't worry; you are not alone.
Unfortunately, we don't have space to explain much about T-SQL. You can
learn more by reading the SQL Server 2005 Compact Edition Books Online.

As an alternative to entering the query yourself, you can click the Query Builder button to use the

graphical query designer to help you build complex queries and test them while you are developing

them. See "Query and View Designer Tools" in the Visual Studio 2005 documentation for more

information about using the graphical query designer tool.

4. Click Finish, and then rename the new table from DataTable1 to an appropriate

name—ProductsCategory, for example, in this scenario. Notice that if you select the

ProductsCategoryTableAdapter on the Data Designer and then look at the Properties dialog box, you

can see that the tools have detected that this is a complex query and so have not set the

InsertCommand, UpdateCommand, or DeleteCommand property.

If your data source is a DataSet, you call Fill on the TableAdapter object to execute the query and load the
results into the DataTable, just as you did before. For example:

 // Get a DataTable filled with the results of a query with a JOIN.
 JOINQueryDataSet ds = new JOINQueryDataSet();
 JOINQueryDataSetTableAdapters.ProductsCategoryTableAdapter ta =
 new JOINQueryDataSetTableAdapters.ProductsCategoryTableAdapter();
 ta.Fill(ds.ProductsCategory);

 // Fill a ListView control with the results.
 foreach (JOINQueryDataSet.ProductsCategoryRow row in ds.ProductsCategory)
 {
 // Simple list in the format: <product name> - <product category name>
 listView1.Items.Add(
 new ListViewItem(row.Name + " - " + row.CategoryName));
 }

Complex Queries and SqlCeResultSets

If you design a data source that uses a complex database query as explained in the previous section, you might
expect that you can simply change the custom tool from the MSDataSetGenerator to the MSResultSetGenerator,
and you will be able to use the strongly typed SqlCeResultSet to perform the query instead of a DataSet.

Unfortunately, the tool-generated code does not work for strongly typed SqlCeResultSet objects that use a JOIN
in the SELECT statement. If you create an instance of the tool-generated SqlCeResultSet (which you have also

extended in the way explained earlier in the section titled "Fixing the SqlCeResultSet"), you will get a
SqlCeException thrown at run time when you try to create an instance using code such as the following:

// Create an instance of the typed SqlCeResultSet.
JoinQueryResultSetResultSets.ProductsCategoryResultSet set =
 new JoinQueryResultSetResultSets.ProductsCategoryResultSet(false);
set.OpenEx();

The SqlCeException error message reads: The specified table does not exist. [ProductsCategory].
ProductsCategory is the name you gave to your new table in the Data Designer, but from this message it is clear
that the generated code is not performing the query you entered earlier:

SELECT Product.ProductID, Product.Name, Product.Color, Product.ListPrice,
 Product.Size, ProductCategory.Name AS CategoryName
FROM Product, ProductCategory
WHERE Product.ProductCategoryID = ProductCategory.ProductCategoryID

Instead, the code is trying to find records from the (nonexistent) ProductsCategory table in the database.

To understand why, you must look at the implementation of the OpenEx method shown in Listing 3-5 (which is
functionally equivalent to the Open method the tools generated) and understand a bit more about the different
ways you can use a SqlCeResultSet. The OpenEx method contains code similar to the following:

/// <summary>
/// Use only with TableDirect mode. ResultSet will contain those
/// records.
/// </summary>
public void OpenEx()
{
 using (SqlCeCommand sqlCeSelectCommand =
 CreateConnectionAndCommand())
 {
 sqlCeSelectCommand.CommandText = "ProductCategory";
 sqlCeSelectCommand.CommandType =
 System.Data.CommandType.TableDirect;

 sqlCeSelectCommand.ExecuteResultSet(ResultSetOptions, this);
 }
}

Notice how the SqlCeCommand is configured: The CommandType property is set to TableDirect. This is a clue to
one of the reasons a SqlCeResultSet is faster than a DataSet for accessing data. TableDirect means that the
database access is done by completely bypassing the SQL Server CE Query Processor. (The Query Processor is
the engine that analyzes your query and works out the quickest way to execute it, taking into account which
indexes are available.) The Query Processor is there to make sure your queries execute as fast as possible, but of
course it imposes its own overhead on execution time, so if you bypass it, you avoid that overhead. However, to
use TableDirect mode, you must set the CommandText to the name of the table you want to access, and that is
why you get the exception; there is no table called ProductsCategory.

So how do you use a SqlCeResultSet with a complex query involving joins across different tables? You must get
it to use the Query Processor again and supply it with the full query string. To do that you must extend the typed
SqlCeResultSet in a slightly different way from how you first extended it to override the memory leak in the Open
method, first shown in Listing 3-5. Add a new version of the Open method that you can use to specify a query
string and that creates the SqlCeCommand in Text mode so that it does not bypass the Query Processor, as
shown in Listing 3-6. You don't need the OpenEx method because that works only in Table Direct mode.

Listing 3-6. Extending the Strongly Typed SqlCeResultSet to Support Complex Queries

namespace MobileDevelopersHandbook.JoinQueryResultSetResultSets
{
 using System.Data;
 using System.Data.SqlServerCe;

 partial class ProductsCategoryResultSet
 {
 /// <summary>
 /// Calling this method with an openTable value of true provides
 /// the same behavior as using the default constructor.
 /// </summary>
 /// <param name="openTable">Open the result set</param>

 /// <param name="connString">Connection string to the database</param>
 public ProductsCategoryResultSet(bool openTable, string connString)
 {
 resultSetOptions = ResultSetOptions.Scrollable |
 ResultSetOptions.Sensitive | ResultSetOptions.Updatable;
 resultSetConnectionString = connString;
 if (openTable)
 this.Open();
 }

 /// <summary>
 /// ResultSet will contain those records.
 /// </summary>
 /// <param name="commandText"></param>
 public void Open(string sqlCommandText)
 {
 using (SqlCeCommand sqlCeSelectCommand =
 CreateConnectionAndCommand())
 {
 sqlCeSelectCommand.CommandText = sqlCommandText;
 sqlCeSelectCommand.CommandType = System.Data.CommandType.Text;

 sqlCeSelectCommand.ExecuteResultSet(resultSetOptions, this);
 }
 }

 /// <summary>
 /// Creates a connection, opens it, and factories a command instance
 /// from the connection.
 /// </summary>
 /// <returns></returns>
 protected SqlCeCommand CreateConnectionAndCommand()
 {
 sqlCeConnection = new
 System.Data.SqlServerCe.SqlCeConnection(resultSetConnectionString);
 sqlCeConnection.Open();

 return sqlCeConnection.CreateCommand();
 }

 public new void Dispose()
 {
 if (this.Connection != null)
 {
 this.Connection.Dispose();
 }
 base.Dispose();
 }
 }
}

To call this, use code similar to the following:

string conn = "Data Source ="
 + (System.IO.Path.GetDirectoryName(System.Reflection.
 Assembly.GetExecutingAssembly().GetName().CodeBase)
 + "\\MyDatabase.sdf\\; Password =\"MobileP@ssw0rd\";");

// Create an instance using your own constructor—don't open it yet.
JoinQueryResultSetResultSets.ProductsCategoryResultSet rsltSet =
 new JoinQueryResultSetResultSets.ProductsCategoryResultSet(false, conn);

// Define the query.
string query = "SELECT Product.ProductID, Product.Name, Product.Color,"
 + "Product.ListPrice, Product.Size, ProductCategory.Name AS CategoryName "
 + "FROM Product, ProductCategory "
 + "WHERE Product.ProductCategoryID = ProductCategory.ProductCategoryID";

// Open it, and supply your query.
rsltSet.Open(query);

// List the results in a ListView.
while (rsltSet.Read())
{

 // Simple list in the format: <product name> - <product category mame>
 listView1.Items.Add(
 new ListViewItem(rsltSet.Name + " - " + rsltSet.CategoryName));
}

Warning

The preceding code uses a hard-coded database password and is shown that way
for brevity only. Do not hard-code passwords into your own applications! See
Chapter 10 for advice on how to protect passwords and other sensitive data in your
applications.

Taking Advantage of Indexes with the SqlCeResultSet

If you have experience coding with SqlCeDataReader objects, you may be wondering what the strongly typed
SqlCeResultSet offers that a SqlCeDataReader doesn't. What you get with the technique just described is the
ability to refer to individual fields in the rows you are reading by using a descriptive name, such as rsltSet.Name
and rsltSet.CategoryName in the preceding sample. Apart from that, at least when you are performing a complex
query such as in this example, the strongly typed SqlCeResultSet does not offer any additional functionality over
a SqlCeDataReader (remember that the SqlCeResultSet class descends from SqlCeDataReader in any case).

However, when you use a SqlCeResultSet in Table Direct mode, not only can you avoid the overhead of the Query
Processor, but you can take advantage of additional optimizations. If the table you are reading has an index, you
can sort the result set on that index by setting the Index property of the SqlCeCommand to the name of the
index. You can also filter on a range of values in that index by calling SqlCeCommand.SetRange. SetRange takes
three parameters: a DbRangeOptions enumeration, a start value, and an end value. Use DbRangeOptions to
specify how the start and end values you supply are used; for example, whether the selected values are inclusive
or exclusive of the start and end values. See the Visual Studio documentation for a full description of the options.
To make use of this, you can further extend the methods in the partial class shown in Listing 3-6 to include a
utility method to sort and filter on an index, as shown in Listing 3-7. Although this may seem like more work
than using a T-SQL query is, in low-memory situations avoiding the Query Processor can result in dramatic
performance improvement.

Listing 3-7. Extending the Strongly Typed SqlCeResultSet to Allow Sorting and Filtering on an

Index

/// <summary>
/// ResultSet will contain only those records where the value of the specified
/// index falls within rangeStart and rangeEnd inclusive. Records will be
/// returned in the order of the index.
/// If rangeStart is null, the ResultSet will contain the whole table with the
/// records returned in the order of the index.
/// </summary>
/// <param name="indexName"></param>
/// <param name="rangeStart"></param>
/// <param name="rangeEnd"></param>
public void Open(string indexName, object[] rangeStart, object[] rangeEnd)
{
 using (SqlCeCommand sqlCeSelectCommand = CreateConnectionAndCommand())
 {
 sqlCeSelectCommand.CommandText = tableName;
 sqlCeSelectCommand.CommandType = System.Data.CommandType.TableDirect;
 sqlCeSelectCommand.IndexName = indexName;

 // If a range value specified, call SetRange—start without end is
 // legal, but not vice versa.
 if (rangeStart != null)
 sqlCeSelectCommand.SetRange(DbRangeOptions.Default,
 rangeStart, rangeEnd);

 sqlCeSelectCommand.ExecuteResultSet(this.resultSetOptions, this);
 }
}

Tip

In the downloadable sample code for this chapter, you will find a code snippet you

can use to generate these extensions for a SqlCeResultSet, with instructions on how
to install it in Visual Studio. Both Microsoft Visual C# and Visual Basic versions can
be found there. Credit must be given to Most Valuable Professional (MVP) Jim
Wilson, who first developed this code snippet.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Building a Data-Bound GUI

So far in this chapter, you have learned how to design project data sources using the designer tools in Visual
Studio 2005. Now it is time to use them in a data-bound GUI.

Building a Quick UI Using the Visual Tools

The Visual Studio 2005 Forms Designer includes a tool that you can easily use to generate a set of forms to
manipulate the records from a DataTable, to display the records in a DataGrid, to add new records, and to view or
edit existing records. This tool is useful for building quick test programs, and it also serves as an excellent way of
learning how to program the BindingSource control, a new control in .NET Framework 2.0 that makes it easy to
build data-bound UIs, which is the main topic of this part of this chapter. This tool is available only from the
SmartTag menu on a DataGrid bound to a DataSet data source. A SmartTag is the arrow shown on the upper
right of a control displayed in the Windows Forms Designer; you can click the arrow to display a menu of actions
you can perform that relate to that control.

Unfortunately, if your data source is a SqlCeResultSet, Visual Studio does not support this functionality, so the
SmartTag does not appear and you have no option but to build the forms to add, view, or edit records manually.

Generating Data Forms

1. First, create a data source that is a DataSet containing a table that includes all the columns from a

single database table, as you did earlier in this chapter. For example, create a DataSet that includes

the Product and ProductCategory tables from your test database.

2. Open a form in design view. Then go to the Data Sources dialog box and expand the ProductsDataSet.

Under it you will see the table or tables in your DataSet. If you click a table, you will see that a

drop-down menu is associated with it that you can use to select between DataGrid, Details, or None.

These are options for how the designer builds a UI bound to this DataTable, and we explain them in

more detail very soon; for now, select DataGrid, as shown in the following:

3. Drag the Product table onto the form. The tools create a DataGrid control that is data bound to the
Product DataTable. In the Properties dialog box, change the Dock property so that the DataGrid fills

the form.

4. Click the DataGrid in the Designer. On the SmartTag menu, you can see some design options, one of

which is Generate Data Forms. Click this option as shown in the following:

[View full size image]

5. Visual Studio creates two new forms, ProductEditViewDialog and ProductSummaryViewDialog, and

adds them to your project. It also adds a menu item to the main form with the text Add and wires up a

Click event handler for the DataGrid. If you run this application now, you'll find that you can add new

records, click a row in the DataGrid to view existing records in the Summary View, and from there edit

details of existing records.

Now, this sort of functionality in the integrated development environment (IDE) is quite fun, and a gift to demo
gods who have to do presentations to show off the capabilities of Visual Studio, but for real development at best
it serves as a starting point for a real application. If you study the code it has generated, you can see that it has
added a call to ProductTableAdapter.Fill in the Form1_Load event handler, but there is no code to call
ProductTableAdapter.Update to write the changes back to the database; you must add this code. The other
problem you can fix in this particular example is to supply a list of product categories in a drop-down list, rather
than ask the user to enter an integer ProductCategoryID, as is required by the tool-generated
ProductEditViewDialog form.

Before you fix these issues, look at how the generated code uses the BindingSource control because it serves as
a good, simple introduction. In .NET Compact Framework 2.0, you should always use BindingSource controls
because it makes data binding a lot easier than it is in .NET Compact Framework 1.0.

Programming the BindingSource Control

In .NET Compact Framework 1.0, you accomplish data binding by setting the DataSource and DataMember
properties directly to the data source (such as a DataSet), but in .NET Compact Framework 2.0, the best
approach is to bind your controls to a BindingSource.

A BindingSource control simplifies binding controls on a form to data by providing a layer of indirection, currency
management, change notification, and other services. This is accomplished by attaching the BindingSource
component to your data source and then binding the controls on your form to the BindingSource component. All
further interaction with the data, including navigating, sorting, filtering, and updating, is accomplished with calls
to the BindingSource component.

An easy way to learn how to program a BindingSource control is by examining the code that was generated in
the Quick UI. If you look at the Forms Designer for your main form where Visual Studio created the DataGrid, you
can see that visible in the component tray is a BindingSource instance called productBindingSource, an instance
of your strongly typed DataSet called productsDataSet, and an instance of the productsTableAdapter (see Figure
3-12). If you look at the Forms Designer–generated code for your form, you can see that the Forms Designer
creates an instance of each of these objects in the InitializeComponent method, which is called from your form's
constructor.

Figure 3-12. The Forms Designer–created BindingSource, DataSet, and TableAdapter instance
that result from dragging a data source onto a form

[View full size image]

Why the BindingSource is a good thing

The BindingSource provides a solution to some problematic data-binding issues in .NET Compact Framework 1.0.
By sitting between the data source and controls, the BindingSource can provide services on behalf of the data
source. The most important services provided by the BindingSource are the following:

Provides IBindingList services for non-IBindingLists, including IEnumerable binding Windows
Forms complex data binding (that is, binding list-based controls such as DataGrid or ListView to a set of
records) in Visual Studio 2005 works correctly against lists of type IEnumerable when bound through a
BindingSource (version 1.0 requires IList). In the case of IEnumerable, the BindingSource copies all data
source elements into an internal list and indirectly binds controls to the internal list.

Supports type-based binding The Windows Forms 1.0 designer requires an instance of a type to exist at
design time to set up design-time data binding. The BindingSource provides type binding services such
that it can "project" a type to bound controls as an empty list of that type. For example, you can use the
following code, which is illegal with the DataSource property of standard Windows Forms controls:

myBindingSource.DataSource = typeof(Customer);

Provides centralized control for binding operations A common binding request is the ability to
suspend and resume binding for a data source. In version 1.0, the CurrencyManager provides
SuspendBinding() and ResumeBinding() methods, but these work only for simple binding (simple binding
of a property on a control to a property on an object). When binding through a BindingSource, you can
suspend both simple and complex binding by having the BindingSource disable firing of ListChanged
events (ListChanged events control binding). To do this, set the BindingSource RaiseListChangedEvents
property to false.

Simplifies currency management The BindingSource component exposes most of the CurrencyManager
events and properties. This enables you to program against common currency-related events such as
CurrentChanged and PositionChanged at design time.

If you look at the properties for the DataGrid, you can see that the DataSource property is set to
productBindingSource. The DataSource property of the productBindingSource is set to productsDataSet, and the
DataMember property is set to the Product table, so you can see how the BindingSource object sits between the
control and the data source.

When you load this form, the DataGrid receives details of all records in the data source and displays them in the
grid.

Adding Records to a Record Set Using BindingSource

Now look at the code in the menuItem1 Click event handler. This adds a new record to the record set simply by
calling AddNew on the BindingSource:

productBindingSource.AddNew();

This adds a new record to the underlying record set in the data source (which is the Product DataTable in the
DataSet in this example). Because the DataGrid is data bound to the BindingSource, it also displays a new row in

the grid automatically. The BindingSource also operates as a currency manager that keeps track of the current
position in the collection of records, and when you call AddNew, the BindingSource.Position property is
automatically set to the index of the newly added record.

One disadvantage of simply calling AddNew is that you cannot initialize any columns in the new record. One
workaround for this if your underlying data source is a DataTable is to set the default value on the columns,
which you can do in the Data Designer at design time or in code at run time; for example:

// Set some default column values.
this.productsDataSet.Product.ProductCategoryIDColumn.DefaultValue = 1;
this.productsDataSet.Product.SizeColumn.DefaultValue = "M";

You can also trap the DataTable.TableNewRow event to set columns in a new row.

A different way of changing fields in the new record, and the technique you will have to use if your data source is
not a DataTable is to trap the BindingSource AddingNew event. The AddingNew event occurs before a new object
is added to the underlying list represented by the BindingSource.List property. This event is fired after the
AddNew method is called but before the new item is created and added to the underlying list. By handling this
event, the programmer can provide custom item creation and insertion behavior without being forced to derive
from the BindingSource class. This is accomplished in the event handler by setting the NewObject property of the
System.ComponentModel.AddingNewEventArgs parameter to the new item.

Beware if you try to use the AddingNew event when you are bound to a DataTable (as in this example) or a
DataView. When you bind to a DataTable, the BindingSource actually binds to a DataView of that DataTable. A
DataView contains a collection of DataRowView objects, but you cannot create a new instance of DataRowView in
your AddingNew event handler and add it to the DataView exposed by BindingView.List; you will get a
System.ArgumentException: Cannot add external objects to this list. There is a workaround for this: You can
actually ask the DataView to create the new row for you, by calling DataView.AddNew. For example, if you add a
new Product record and want to set the ProductCategoryID field to 1, use this code:

private void productBindingSource_AddingNew(
 object sender, AddingNewEventArgs e)
{
 MessageBox.Show("AddingNew event fired");
 // Create a DataRowView.
 DataRowView datarowview = ((DataView)productBindingSource.List).AddNew();

 // You can set fields in the new row like this:
 datarowview["ProductCategoryID"] = 1;
 // Or by getting the underlying DataRow in the data source
 ProductsDataSet.ProductRow productRow =
 (ProductsDataSet.ProductRow)datarowview.Row;
 productRow.ProductCategoryID = 1;
 productRow.ListPrice = 0.00M;

 // Tell it that this is the new row.
 e.NewObject = datarowview;

 // Set the position of the BindingSource.
 productBindingSource.Position = productBindingSource.Count - 1;
}

Note that if you handle the AddingNew event, you must position the current record to the new row, as shown by
the last line of this method. If you don't handle the AddingNew event, you do not have to set the position of the
BindingSource manually when you add a new record because it is handled for you automatically by the internal
implementation of BindingSource.AddNew.

Navigating Through a Record Set Using a BindingSource

As just mentioned, you use the BindingSource.Position property to set the current record in the rowset.
BindingSource has a bunch of methods you can use for navigating through the records, including MoveFirst,
MoveLast, MoveNext, and MovePrevious.

In fact, BindingSource-aware controls such as the DataGrid set the current row position when you click a row
displayed in the grid. The code in the Click event for the DataGrid in the sample application takes advantage of
this and implicitly passes the current row position by passing a reference to its productBindingSource object to
the static Instance method of the Summary View form, as shown in the following:

private void productDataGrid_Click(object sender, EventArgs e)
{
 ProductSummaryViewDialog productSummaryViewDialog =
 ProductSummaryViewDialog.Instance(this.productBindingSource);
 productSummaryViewDialog.ShowDialog();
}

If you look now at the code of the ProductSummaryViewDialog.Instance method (shown just below), you can see
that it does three important things:

1. It implements the singleton pattern. It creates a new instance if the object does not already exist;

otherwise, it returns the previously created instance.

2. It sets the productBindingSource.DataSource property to the BindingSource that has been passed in.

This particular productBindingSource is a new instance of BindingSource that is local to the

ProductSummaryViewDialog form.

3. The code sets the Position property of this local productBindingSource to the same position of the

BindingSource passed in, which is the current selected row in the DataGrid on the entry form.

public static ProductSummaryViewDialog Instance
 (System.Windows.Forms.BindingSource bindingSource)
{
 System.Windows.Forms.Cursor.Current =
 System.Windows.Forms.Cursors.WaitCursor;
 if ((defaultInstance == null))
 {
 defaultInstance = new ProductSummaryViewDialog();
 defaultInstance.productBindingSource.DataSource = bindingSource;
 }
 defaultInstance.AutoScrollPosition = new System.Drawing.Point(0, 0);

 defaultInstance.productBindingSource.Position = bindingSource.Position;
 System.Windows.Forms.Cursor.Current =
 System.Windows.Forms.Cursors.Default;
 return defaultInstance;
}

The result of this processing is that the productBindingSource object on this form is bound to the same position
in the same data collection as the entry form. Controls on this form are, of course, bound to the
productBindingSource object on this form, resulting in the display of the correct record on this form as the one
that was clicked in the DataGrid.

If you look at the ProductSummaryViewDialog form, you can see that it does not contain a DataGrid but actually
contains a lot of Label controls, some of which are data bound and some of which are not; this is an example of a
details form.

Data Binding Details Forms

A details form is one designed to view or edit the fields in a single record. Both the ProductSummaryViewDialog
and ProductEditViewDialog forms that Visual Studio generated are details forms.

If you look at the Label controls, some, such as productIDLabel1, are there to display the values from the current
record. If you expand the (DataBindings) property in the Properties dialog box, you can see that the Text
property of this Label is bound to the ProductID field in the productBindingSource (Figure 3-13); you can click
the drop-down menu to select a different field to bind to.

Figure 3-13. Data-binding properties for a field on a details form

[View full size image]

You can change the way a field is displayed by clicking the ellipsis button by the Advanced property. For
example, the ListPrice field should be formatted as currency, and you can set this in the Formatting And
Advanced Binding dialog box, as shown in Figure 3-14.

Figure 3-14. Setting formatting in the Formatting And Advanced Binding dialog box

[View full size image]

Creating Your Own Details Forms

You can easily generate your own details forms. In the Data Sources dialog box, you can use the drop-down
menu associated with each data source to choose between a DataGrid or a Details view. Previously, you chose
DataGrid when you dragged the data source onto a form, but if you choose Details, the designer generates
separate controls for each field, each with a Label control to identify it. When you select Details view, by default
the designer generates TextBox controls for each field, but you can change these to other controls, such as Label,
ListBox, ComboBox, NumericUpDown, or None, as shown in Figure 3-15.

Figure 3-15. Setting field data-binding options for details forms

When you auto-generated the data forms, the tools created one form for viewing records
(ProductSummaryViewDialog) and another for editing records (ProductEditViewDialog). On the
ProductSummaryViewDialog, the tools generated Label controls to show the values in all the fields so that you
could view them but not change them; on the ProductEditViewDialog, it used TextBox controls to allow editing.
Notice that on the ProductEditViewDialog form, the ProductID field is not shown (in other words, the
data-binding control for that field is None). This is as you should expect because it is an identity field, meaning
that the value is assigned for you by the database to identify that record, and although it is reasonable to edit
the other fields in the record, you should not change the record's identity field. If you are generating your own
details form for editing, you should set the data binding for the identity field in a record to None.

Accepting and Canceling Updates with EndEdit and CancelEdit

If you run this sample application now and click the New menu option to create a new product, and then simply
click OK on the ProductEditViewDialog form without supplying a name for the product, you will get a
System.Data.NoNullAllowed exception. This exception is actually thrown at the following line in the
ProductEditViewDialog_Closing event handler:

private void ProductEditViewDialog_Closing(object sender, CancelEventArgs e)
{
 this.productBindingSource.EndEdit();
}

The reason the exception is thrown is that the BindingSource control introduces another layer of update buffering
to your applications. Any changes you make to values in controls that are bound to a BindingSource are buffered
and not applied to the underlying record collection until you call EndEdit on the BindingSource. In this example,

the underlying data source is the Product DataTable that disallows Null values in the Name and ListPrice fields.
Because you did not enter a name, you get the System.Data.NoNullAllowed exception when the changes are
applied to the DataTable.

Note

If your BindingSource is bound to a SqlCeResultSet (more on this in the next
section), the changes are applied directly to the database. In this case, if there are
errors when you call EndEdit, you will get a
System.Data.SqlServerCe.SqlCeException, not one of the ADO.NET exceptions from
System.Data.

You should put a try..catch around calls to EndEdit to catch data validation errors. In this case, you can simply
display an error message and cancel the close of the form so that the user can correct the error, as shown in the
following code. Incidentally, this is also a good place to call an update on the TableAdapter to write changes from
the DataTable back to the database, which is done in the code sample in the ApplyUpdatesToDatabase
method—when your data source is a DataTable, you have to code this somewhere in your application yourself
because the tools do not generate any code to do this.

private void ProductEditViewDialog_Closing(object sender, CancelEventArgs e)
{
 try
 {
 this.productBindingSource.EndEdit();

 // If the changes are applied correctly to the DataTable, apply them
 // also to the database.
 ApplyUpdatesToDatabase();
 }

 // If your data source is a DataTable, you will get an exception from
 // System.Data.
 // If your underlying data source is a SqlCeResultSet, EndEdit causes
 // changes to be applied to the database, hence you will get a
 // SqlCeException if a constraint is violated; or some other error.
 catch (System.Data.NoNullAllowedException)
 {
 MessageBox.Show("You have not entered one or more of the following " +
 "required values: Name, ListPrice");

 // Cancel the form closing.
 e.Cancel = true;
 }
}

private void ApplyUpdatesToDatabase()
{
 // Write the changes back to the database.
 // Get the DataTable.
 DataTable sourceDataTable =
 ((DataRowView)this.productBindingSource.Current).DataView.Table;
 ProductsDataSet.ProductDataTable productTable =
 (ProductsDataSet.ProductDataTable)sourceDataTable;

 // Update
 ProductsDataSetTableAdapters.ProductTableAdapter ta =
 new ProductsDataSetTableAdapters.ProductTableAdapter();
 ta.Update(productTable);
}

Tip

A common cause of data validation errors occurs when the user has entered a text
value that is longer than the maximum allowed length of the field in the table.
When you drag a TextBox onto a form, its MaxLength property is always set to
32767. Be sure to change this to the correct length allowed for that field.

Canceling Updates

You can also ask the BindingSource control to discard any updates by calling the CancelEdit method. For
example, you can add a Cancel menu button to your form, and then in the Click event handler call
BindingSource.CancelEdit and set the DialogResult property of the form to cause it to close:

private void cancelMenuItem_Click(object sender, EventArgs e)
{
 this.productBindingSource.CancelEdit();
 this.DialogResult = DialogResult.Cancel;
}

Getting at the Underlying DataRow from the BindingSource

The ApplyUpdatesToDatabase method in the preceding code sample illustrates how to get at the underlying data
when your data source is a DataTable. The BindingSource.Current property returns an object that is the current
row in the list of records maintained by the BindingSource, and you must cast this to the correct type of row for
the data source you are using. When the underlying data source is a DataTable, the BindingSource list is actually
a DataView, and each row is a DataRowView. If the underlying data source is a SqlCeResultSet, the
BindingSource record list is actually a ResultSetView object, which contains RowView objects.

Knowing this you can see that to get at the underlying DataRow and/or DataTable when your data source is a
DataTable, you can use code such as follows:

DataRowView currentRowView =(DataRowView)myBindingSource.Current;
DataRow currentDataRow = currentRowView.Row;
DataTable currentDataTable = currentRowView.DataView.Table;

Similarly, if you are using a SqlCeResultSet, use code such as the following to retrieve the underlying record in
the SqlCeResultSet:

RowView currentRowView =(RowView)myBindingSource.Current;
SqlCeUpdatableRecord currentRecord = currentRowView.UpdatableRecord;

Data Binding with the SqlCeResultSet

The BindingSource control works fine with a SqlCeResultSet as well. You can find out how by extending the
sample application to allow you to enter product categories. You can do this simply enough by adding a new form
to your project and adding a menu option to your main form with the legend Categories, which creates an
instance of that form and then calls ShowDialog on it. Create a strongly typed SqlCeResultSet in your project for
the ProductCategory table, as explained earlier in this chapter, and then drag the ProductCategory table from the
Data Sources dialog box onto the new form, having first selected DataGrid as the control to use for the UI. This
form displays all ProductCategory records in the DataGrid.

Tip

When you are using data binding to display a list of records, you get a substantial
performance improvement using a SqlCeResultSet over a DataSet only if the control
is a DataGrid. The DataGrid fetches only visible rows from the SqlCeResultSet (and
hence from the database). All other controls must retrieve all the records to load
the control, and so if there are a large number of rows, the SqlCeResultSet will not
give you a performance advantage over the DataSet.

On the other hand, the performance improvement that comes from using a
DataGrid can be so substantial that you may consider using an appropriately
formatted DataGrid bound to a SqlCeResultSet instead of a list control.

In this example application, there's no point in creating a summary view form to view product categories such as
the one you have for viewing product details because there are only two fields in the ProductCategory table, and
you can easily see both in the DataGrid. However, you need to create a new form that allows the user to edit new
or existing records. When the new empty form is displayed in the Forms Designer, go to the Data Sources dialog
box and change the data-binding options for the SqlCeResultSet so that it generates a Details view, set the
control to use for the ProductCategoryID field (the identity field) to None, and then drag the ProductCategory
data source onto the new form as shown:

Because this new form was not generated by the Generate Data Forms tools, you are required to change some of
the code. You must pass the BindingSource from the form displaying the DataGrid so that you can identify the
correct record to edit. Add a static Instance method similar to the one generated for you by the tools earlier,
which creates the form and sets up the productCategoryBindingSource instance in this form correctly. Also,
improve the usability by adding Save and Cancel menu options, and set the ControlBox property of the form to
false. Your form should look something like the one in Figure 3-16.

Figure 3-16. Screen layout for a details form to edit product categories

[View full size image]

The code for this form is shown in Listing 3-8. Notice that the code that runs when the user clicks the Save

button calls EndEdit on the BindingSource, just as you did by using a DataTable data source. However, this time
the changes are applied directly to the database, so if there is an error, you will get a
System.Data.SqlServerCe.SqlCeException, not an exception from System.Data.

Listing 3-8. Code for the Form to Edit Product Categories That Uses a SqlCeResultSet Data

Source

using System;
using System.ComponentModel;
using System.Windows.Forms;

namespace MobileDevelopersHandbook
{
 public partial class ProductCategoryEditViewDialog : Form
 {
 private static ProductCategoryEditViewDialog defaultInstance;

 public static ProductCategoryEditViewDialog Instance
 (System.Windows.Forms.BindingSource bindingSource)
 {
 System.Windows.Forms.Cursor.Current =
 System.Windows.Forms.Cursors.WaitCursor;
 if ((defaultInstance == null))
 {
 defaultInstance = new
 MobileDevelopersHandbook.ProductCategoryEditViewDialog();
 defaultInstance.productCategoryResultSetBindingSource
 .DataSource = bindingSource;
 }
 defaultInstance.productCategoryResultSetBindingSource
 .Position = bindingSource.Position;
 System.Windows.Forms.Cursor.Current =
 System.Windows.Forms.Cursors.Default;
 return defaultInstance;
 }

 public ProductCategoryEditViewDialog()
 {
 InitializeComponent();
 }

 private void cancelMenuItem_Click(object sender, EventArgs e)
 {
 this.productCategoryResultSetBindingSource.CancelEdit();
 this.DialogResult = DialogResult.Cancel;
 }

 private const int SSCE_M_NULLINVALID = 25005;

 private void saveMenuItem_Click(object sender, EventArgs e)
 {
 try
 {
 this.productCategoryResultSetBindingSource.EndEdit();
 // Close the form
 this.DialogResult = DialogResult.OK;
 }
 // If your underlying DataSource is a SqlCeResultSet, EndEdit
 // causes changes to be applied to the database, hence you will
 // get a SqlCeException if a constraint is violated, or some
 // other error.
 catch (System.Data.SqlServerCe.SqlCeException sqlEx)
 {
 if (sqlEx.NativeError == SSCE_M_NULLINVALID)
 {
 MessageBox.Show("You must specify a name");
 }
 else
 throw;
 }
 }
 }
}

All that remains is to program event handlers for the Click event on the DataGrid to display the new form to edit
an existing record and for the Click event on the New menu option to edit the details of a new record:

private void newMenuItemMenuItem_Click(object sender, EventArgs e)
{
 productCategoryResultSetBindingSource.AddNew();
 ShowEditDialog();
}

private void productCategoryResultSetDataGrid_Click
 (object sender, EventArgs e)
 {
 ShowEditDialog();
 }

private void ShowEditDialog()
{
 ProductCategoryEditViewDialog productcategoryEditViewDialog =
 ProductCategoryEditViewDialog.Instance(
 this.productCategoryResultSetBindingSource);
 productcategoryEditViewDialog.ShowDialog();
}

Advanced Data Binding

Before leaving the subject of data binding, we discuss how you solve two common requirements:

Bind a ComboBox or ListBox to a list of records so that they display details from a lookup table (perhaps a
description or name), but store the index of the selected record when an item in the list is selected

Create a master–detail UI, where selection of a record in one list causes a secondary grid or list to show
only records from a different table that are related to the selected record

Data-Binding Combo Boxes to a Lookup Table

It is quite common to store in one table the ID of a record in another table. For example, a SalesOrder record
might contain a CustomerID and a ProductID. In the fictional example you have been developing in this chapter,
each Product record contains the ProductCategoryID.

On the details forms, you can view and edit Product records, and on both forms that it created for you, it displays
the ProductCategoryID field. Wouldn't it be better to display the product category name in a drop-down list on
the ProductEditViewDialog form but still to store the correct ProductCategoryID when the user makes a selection?
Fortunately, this is quite easy to do.

The ComboBox and ListBox controls have five properties you can use in this scenario:

DataSource Set the DataSource to the data source that provides the data that is displayed in the list's
control.

DataMember If the DataSource is a compound object such as a DataSet, set this property to the particular
DataTable that provides the data.

DisplayMember Set the DisplayMember to the name of the field that is displayed in the drop-down list.

ValueMember Set the ValueMember to the name of the field that supplies the value for items in the
control. Although the user cannot see this field in the list, when the user selects an item, the Value
property of the control is set to the value of the selected item.

SelectedValue The SelectedValue property exposes the value of the selected item. In the (Data Bindings)
section of the Properties dialog box, you can data-bind this property to an item in a data source.

To display the list of items, use a data source that exposes the data items you require, set the DataSource and (if
needed) DataMember properties to the source table, and set the DisplayMember and ValueMember properties to
fields in that table. To do this in the sample application, do the following:

1. Drag a BindingSource from the Toolbox onto the component tray under the ProductEditViewDialog

form (in Designer view). Rename it to productCategoryBindingSource. Set the DataSource property of

this component to the ProductCategoryResultSet you created earlier.

2. Add the following code to the Load event handler for the form to create a new instance of the

ProductCategoryResultSet, and bind the BindingSource to it:

 productCategoryResultSet =
 new MyResultSetsResultSets.ProductCategoryResultSet();

 productCategoryResultSet.Bind(this.productCategoryBindingSource);

3. Delete the TextBox that currently exists to allow the user to enter the ProductCategoryID. Drag a
ComboBox there instead.

4. Set the DataSource property of the ComboBox to productCatgoryBindingSource, set DisplayMember to

Name, and set ValueMember to ProductCategoryID.

Now you must take the SelectedValue of this ComboBox and write it away into the Product record that this form
is editing. To do this, use the (Data Bindings) section of the Properties dialog box to bind the SelectedValue
property to the ProductCategoryID field in the productBindingSource—the original BindingSource on this form
that binds to the Product record being edited (see Figure 3-17).

Figure 3-17. Setting properties to display records from one data source and store selected

values in another

Creating a Master–Detail GUI

A master–detail display is one in which selecting a record from a master category list results in a different list of
related records to be automatically filtered to show only relevant child records. The second list could be on the
same form or on another one. For example, in the simple database you have been working with, if you show a list
of product categories, when the user selects a category, you want to show only products in that product
category.

Master–Details with DataSets

This is one of those occasions when the relative complexity of a DataSet object compared to a SqlCeResultSet
makes your job a little bit easier. To show why, create a new project, copy in the database you have been
working with throughout this chapter, and then use Server Explorer to open each table and enter a few records.
Create a typed DataSet with the ProductCategory and Product tables in it, just as you did before. Now drag the
ProductCategory table from the Data Sources dialog box onto a form to create a DataGrid. You now have a
DataGrid that displays all the product categories.

Creating the dependent child list is very simple. Remember that foreign key you created between the
ProductCategory and Product tables that is shown in the Data Designer as a link between the two tables (as
shown in Figure 3-8)? That foreign key is represented in the DataSet object, and you can make use of that now
to generate the correct data binding, If you expand the ProductCategory table in the Data Sources dialog box,
you can see that the DataSet already represents the parent–child relationship between the two tables because it
shows the Product table as a child of ProductCategory:

All you have to do is drag the child Product table (selecting DataGrid for the control to generate) from the Data
Sources dialog box onto your form, and you have the functionality you require. The tools create a DataGrid on the
form that is bound to a BindingSource. That BindingSource, called product_productCategory_FKBindingSource, is
configured so that its DataSource property is the productCategoryBindingSource (which is bound to the DataSet
instance, of course), but its DataMember property is set to Product_ProductCategory_FK—the foreign key
between the ProductCategory and Product tables. This gives you the functionality you want, as shown in Figure
3-18.

Figure 3-18. Master–detail: Selecting a category in the top grid, which automatically shows
related records in the lower grid

Of course, you don't have to use the visual tools to create this kind of relationship. But if you want to learn the
code required to achieve it, the easiest way is to create a tool-generated example such as this and then look at
the code the tools have generated.

Master–Detail with SqlCeResultSets

If you are using SqlCeResultSet objects, you have to write some code to handle this relationship. Create a typed
SqlCeResultSet containing both the ProductCategory and Product tables, and extend each strongly typed
SqlCeResultSet with a new constructor and custom Open methods as you did earlier in this chapter (as shown in
Listing 3-7). Then drag the ProductCategory from the Data Sources dialog box onto the form to create the first
DataGrid. You can also drag the Product table onto the form to create the second DataGrid, but initially it will
contain all the Product records unfiltered.

You must create a new SqlCeResultSet instance containing only the required product records each time the user
clicks a new category in the Product categories grid. To do this, write an event handler for the CellChanged event
of the productCategoryDataGrid containing code to dispose of the old SqlCeResultSet instance and generate a
new one containing only Product records in the required ProductCategory. You can take advantage of the index
you created on the ProductCategoryID field at the beginning of this chapter. The complete code for this is shown
in Listing 3-9.

Listing 3-9. Code to Manually Re-Create the SqlCeResultSet for the Required Child Records in a

Master–Detail GUI

using System;
using System.Data.SqlServerCe;
using System.Windows.Forms;

namespace MobileDevelopersHandbook
{
 public partial class ResultSetForm : Form
 {
 private MyResultSetsResultSets.ProductResultSet productResultSet;
 private MyResultSetsResultSets.ProductCategoryResultSet
 productCategoryResultSet;

 public ResultSetForm()
 {
 InitializeComponent();

 }

 private void ResultSetForm_Load(object sender, EventArgs e)
 {
 // NOTE: Lines here were marked TODO: and have now been deleted
 // to remove the default AutoFill for ProductResultSet.

 // Default AutoFill for ProductCategoryResultSet
 productCategoryResultSet = new
 MyResultSetsResultSets.ProductCategoryResultSet();
 productCategoryResultSet.Bind(
 this.productCategoryResultSetBindingSource);

 // Set up the child records data source.
 SetProductResultSet();
 }
 private void productCategoryResultSetDataGrid_CurrentCellChanged(
 object sender, EventArgs e)
 {
 // Save reference to existing result set.
 SqlCeResultSet oldRS = this.productResultSet;

 // User has clicked the grid.
 SetProductResultSet();

 // Dispose of the redundant SqlCEResultSet.
 oldRS.Dispose();
 }

 private void SetProductResultSet()
 {
 // Find the ProductCategoryID of the selected record.
 int prodCatID =
 (int)((RowView)this.productCategoryResultSetBindingSource.Current)
 .UpdatableRecord["ProductCategoryID"];

 // Create new result set using the "custom" constructor.
 productResultSet = new
 MyResultSetsResultSets.ProductResultSet(false);

 // Filter on the index created earlier, and select only the
 // required ProductCategoryID.
 productResultSet.Open("ProductCategoryID_idx",
 prodCatID, prodCatID);

 // Bind the BindingSource.
 productResultSet.Bind(this.productResultSetBindingSource);
 }
 }
}

You should be careful to dispose of unused SqlCeResultSet objects (and also SqlCeCommand and
SqlCeConnection objects). In Listing 3-9, the code in the CurrentCellChanged event handler saves a reference to
the existing instance of the productResultSet before calling the SetProductResultSet method that generates a
new instance that is filtered on the correct ProductCategoryID key value. When that call returns, the code in
CurrentCellChanged disposes of the original instance that is no longer required.

For a working example demonstrating these techniques, see the MasterDetail sample in the downloadable code
on this book's companion Web site.

Formatting Data in DataGrid Controls

All the instruction in this chapter has focused on how to bind controls to data, but nothing has been said about
how to affect the appearance of data in the control.

The DataGrid control has many properties that affect the way users select cells, whether column and row headers
are displayed, and what colors are used for the headers, background, and rows, including BackColor,
BackgroundColor, ColumnHeadersVisible, Font, ForeColor, GridLineColor, RowHeadersVisible, and others. The
most important property, however, is TableStyles, which exposes a collection of DataGridTableStyle objects.

By default, the collection returned by the TableStyles property does not contain any DataGridTableStyle objects.
To create a set of customized views, complete the following steps:

1. Create a DataGridTableStyle.

2. Set the MappingName of the grid table object to the name of the DataTable.

3. Add DataGridColumnStyle objects, one for each grid column you want to show, to the

GridColumnStylesCollection returned by the GridColumnStyles property.

4. Set the MappingName of each DataGridColumnStyle to the ColumnName of a DataColumn.

5. Add the DataGridTableStyle object to the collection returned by the TableStyles property.

Although you can do this programmatically, Visual Studio 2005 provides tools to do this graphically in the Forms
Designer. To start, click the ellipsis button shown for the TableStyles property in the Properties dialog box. Next,
click the Add button to add a DataGridTableStyle. If the underlying data source is a DataSet, you must set the
MappingName to the name of the DataTable that you are displaying in the grid, but if it is a SqlCeResultSet,
leave MappingName blank as shown here:

[View full size image]

Next, you must define DataGridColumnStyle objects for each column you want to display. To start, select the
GridColumnStyle property and click the ellipsis button to start the DataGridColumnStyle editor. Click Add to
create a new object for each column you want to display. Set the MappingName to the name of the column in the
DataTable or SqlCeResultSet, set the HeaderText and the Width as shown in the following example, and you are
done.

[View full size image]

Note that you can create columns only of type DataGridTextBoxColumn, which is different from the DataGrid in
the full .NET Framework, which supports additional column types, such as columns optimized for displaying
numeric values and columns that include CheckBox, Button, or LinkLabel controls. The ability to customize data

display in a DataGrid has been a much requested feature, and in .NET Compact Framework 2.0 SP1 the DataGrid
supports custom DataColumn objects. You can download a sample that shows you how from
blogs.msdn.com/netcfteam/attachment/583542.ashx. (Rename the download file to have an .msi extension, and
install it on a computer that has .NET Compact Framework 2.0 SP1 installed.)

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Persisting Data Without a Database

SQL Server CE is a good choice for storing and organizing your data, but it is not the only choice. There are two
lighter-weight alternatives you can use:

You can create your own DataSet and use its built-in capability to persist itself as an XML file.

You can use a custom object and use XML serialization to save its state to a file.

Persisting to a file is often used for simple data records such as the settings for an application.

Serializing DataSet Objects

You can add a DataSet to your project and use the Data Designer to design tables in it, or you can create a
DataSet programmatically. Then you store your data in it in the same way you do using a DataSet that you
created by dragging tables from a SQL Server CE database. You can also simply use a DataTable object rather
than a DataSet because that too supports the methods required to persist and restore data.

When you must save the data, use the WriteXml method. With the different overrides, you can save to a file, a
stream, a TextWriter, or an XmlWriter; for example:

private void WriteXmlToFile(DataSet thisDataSet)
{
 // Create a file name to write to.
 string filename = "XmlDoc.xml";

 // Write to the file with the WriteXml method; write the schema also.
 thisDataSet.WriteXml(filename, XmlWriteMode.WriteSchema);
}

There are three options for the XmlWriteMode enumeration:

DiffGram Writes the entire DataSet as a DiffGram, including original and current values. To generate a
DiffGram containing only changed values, call GetChanges, and then call WriteXml as a DiffGram on the
returned DataSet.

IgnoreSchema Writes the current contents of the DataSet as XML data, without an Extensible Schema
Definition (XSD) schema.

WriteSchema Writes the current contents of the DataSet as XML data with the relational structure as
inline XSD schema.

Many overrides of WriteXml take only the first parameter, which is equivalent to XmlWriteMode.IgnoreSchema.
You should write the schema if you have to reload the data into an untyped DataSet, and then the reload will be
much more efficient because the schema will not have to be inferred from the structure of the incoming data.

To reload the data, use ReadXml:

using System.Data;
...

private DataSet newDataSet;

private void ReadXmlFromFile()
{
 // Set the file name to read from.
 string filename = "XmlDoc.xml";

 // Create a new DataSet.
 newDataSet = new DataSet("New DataSet");

 // Read the XML document into the DataSet.
 newDataSet.ReadXml(xmlFilename);
}

Serializing Objects

One of the new features in .NET Compact Framework 2.0 is support for XML serialization. You can use XML
serialization to persist the public properties of any class object, a useful technique not only for persisting an
object to a file (as described in this section) but also for serializing objects prior to exchanging them with
another program over a network. The sample described here called XMLSerialization, also available in the
downloadable code on the book's companion Web site, shows how to use XML serialization.

The test application is for smartphones and simply draws some text on the screen using different colors and fonts
(see Figure 3-19).

Figure 3-19. Screen of test application that stores graphics settings in a file stored using XML

serialization

Tip

The sample application also uses a DataSource that is bound to an object—the
Settings file. Although we do not say much in this chapter about creating data
sources from an object (actually, there's not much to say), you can see an example
in the XMLSerialization sample application, in the GUI for the SettingsForm.

The application code has a class called Settings in which you save the Font Name and Size and the background
and foreground colors. At its simplest, this class just exposes the required public properties and is implemented
as a singleton, as shown in Listing 3-10.

Listing 3-10. Basic Class to Store Settings

using System;
using System.Collections.Specialized;
using System.Text;
using System.Xml.Serialization;

namespace MobileDevelopersHandbook
{
 public class Settings
 {
 /// <summary>
 /// Static private member stores ref to single instance of this class.
 /// </summary>
 private static Settings thisClass = null;

 public static Settings Instance
 {
 get { return Settings.GetSettings(); }
 }

 /// <summary>
 /// Static method returns single instance of the settings class.
 /// </summary>
 /// <returns>single instance of the Settings class</returns>
 private static Settings GetSettings()
 {
 if (Settings.thisClass == null)
 {
 // Create instance of the class.
 Settings.thisClass = new Settings();
 }
 return Settings.thisClass;
 }

 #region Properties
 /// <summary>
 /// stores the individual settings
 /// </summary>
 private ListDictionary settingsHashTable = new ListDictionary();

 /// <summary>
 /// Font for text display
 /// </summary>
 public String Fontname
 {
 get
 {
 return (String)settingsHashTable["FontName"];
 }
 set
 {
 settingsHashTable["FontName"] = value;
 }
 }
 /// <summary>
 /// Size of font used for display on learn
 /// </summary>
 public int FontSize
 {
 get
 {
 return (int)settingsHashTable["FontSize"];
 }
 set
 {
 settingsHashTable["FontSize"] = value;
 }
 }

 /// <summary>
 /// color for background
 /// </summary>
 public System.Drawing.Color BackgroundColor
 {
 get
 {

 return (Color)settingsHashTable["BackgroundColor"];
 }
 set
 {
 settingsHashTable["BackgroundColor"] = value;
 }
 }

 /// <summary>
 /// color for text
 /// </summary>
 public System.Drawing.Color TextColor
 {
 get
 {
 return (Color)settingsHashTable["TextColor"];
 }
 set
 {
 settingsHashTable["TextColor"] = value;
 }
 }
 #endregion
 }
}

To serialize this to XML, add a static method that simply creates an instance of XMLSerializer and then calls the
Serialize method; for example:

 private static readonly String settingsFileName
 = "MobileDeveloperHandbookSettings.xml";

 /// <summary>
/// Save the settings to the persistence file.
/// </summary>
public static void SaveSettings()
{
XmlSerializer serializer =
 new XmlSerializer(typeof(Settings), "http://tempuri.org/");
string _path = Path.GetDirectoryName
 (System.Reflection.Assembly.GetExecutingAssembly().
 GetName().CodeBase);
TextWriter writer = new StreamWriter(_path + "\\" +
 settingsFileName, false);
serializer.Serialize(writer, Settings.Instance);
writer.Close();
}

Tip

Creating an XMLSerializer like this is quite an expensive operation because it uses
reflection to analyze the object to be serialized. It is better to create the serializer
object only once in your application and then cache it to be reused next time you
need it. See the XMLSerialization sample application in the downloadable code for
this chapter on the book's companion Web site for an example of how to do this.

Note that the full .NET Framework software development kit (SDK) provides the
Sgen.exe tool to generate serialization assemblies you can use in your full .NET
Framework applications. Unfortunately, this tool does not create assemblies for the
.NET Compact Framework.

The reverse operation to deserialize from the XML file is somewhat similar. In the sample application, this code is
run when the Settings class is first instantiated, which is the obvious time you would want to deserialize settings
that were stored away to file last time the application was run:

 string _path = Path.GetDirectoryName
 (System.Reflection.Assembly.GetExecutingAssembly().GetName().CodeBase);

 if (File.Exists(_path + "\\" + settingsFileName))
 {
 XmlSerializer serializer =
 new XmlSerializer(typeof(Settings), "http://tempuri.org/");
 TextReader reader = new StreamReader(_path + "\\" + settingsFileName);
 try
 {
 Settings myClass = (Settings)serializer.Deserialize(reader);
 Settings.thisClass = myClass;
 }
 catch (InvalidOperationException ex)
 {
 System.Windows.Forms.MessageBox.Show(
 "Error reading Settings file: " + ex.Message);
 }
 finally
 {
 reader.Close();
 }

Serializing System.Color

If you try to run this code now, you will get an error. The problem is with the two public properties that expose
colors. System.Color does not support XML serialization, and you must add some functionality to implement
custom serialization for these colors.

First, create two methods to serialize a color to a string and to handle the reverse for deserialization:

public string SerializeColor(Color color)
{
 return string.Format("{0}:{1}:{2}",
 color.R, color.G, color.B);
}

public Color DeserializeColor(string color)
{
 int r, g, b;

 string[] pieces = color.Split(new char[] { ':' });

 r = int.Parse(pieces[0]);
 g = int.Parse(pieces[1]);
 b = int.Parse(pieces[2]);

 return Color.FromArgb(r, g, b);
}

Next, put an XmlIgnore attribute on the existing public properties that expose Color objects, and create a new
property that exists solely to support serialization. You can also tell it which XML element name to use for the
property using an XmlElement attribute. For example, you would implement the following properties to serialize
and deserialize the TextColor property:

/// <summary>
/// color for text
/// </summary>
[XmlIgnore()]
public System.Drawing.Color TextColor
{
 get
 {
 return (Color)settingsHashTable["TextColor"];
 }
 set
 {
 settingsHashTable["TextColor"] = value;
 }
}
[XmlElement("TextColor")]
public string XmlTextColor
{
 get
 {
 return Settings.Instance.SerializeColor(TextColor);
 }

 set
 {
 TextColor = Settings.Instance.DeserializeColor(value);
 }
}

You can implement custom serialization for any complex object that does not itself support serialization. You
simply must translate it to some object that does support serialization, such as the string used here for
System.Color.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

In this chapter, we have discussed some ways to store and organize data. You have learned how to use a SQL
Server CE database in your application and how to use the tools in Visual Studio 2005 to create typed DataSet
and SqlCeResultSet objects to read and manipulate data. We demonstrated how to create project data sources,
which can be a DataSet, a SqlCeResultSet, or any object that exposes public properties, and also how to use the
BindingSource control to link controls in your GUI to your data sources.

Finally, we looked at how to serialize DataSets by using their built-in serialization capability and how to serialize
any class object using an XML serializer.

We return to SQL Server CE later in Chapter 7 and look at the powerful capabilities in this product for copying
and synchronizing data from SQL Server. Before that, however, the next chapter explores how to test and debug
your applications and how to implement effective exception handling.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 4. Catching Errors, Testing, and Debugging

In this chapter:

Connecting to a Target 143

Compile-Time Errors 150

Exception Handling: Same as the Full .NET Framework 153

Runtime Exceptions 156

Global Exception Handling 167

Some Exceptions Worthy of Further Mention 171

The Log Files 176

Instrumentation 180

Unit Testing 186

This chapter discusses how to connect to an emulator or real device so that you can debug your code during
development. You learn what kind of errors can occur at run time and how you should code your applications to
trap and respond to exceptions. You also learn about the different log files that the Microsoft .NET Compact
Framework runtime can generate and how you can use them to diagnose specific problems, and you learn about
instrumentation—how to write trace messages to the integrated development environment (IDE) or to a log file
to help during development, or to log activity in a deployed application so as to provide a diagnostic tool to help
support personnel.

Connecting to a Target

Before we discuss debugging techniques, best exception handling practices, and tips for troubleshooting
common scenarios, you must understand how to connect Microsoft Visual Studio to the target. The target can be
a real device or an emulator. We refer to target, device, and emulator interchangeably for the rest of this book.

Remote Tools

Visual Studio 2005 provides a single device development tool for both managed and native
developers. Previously, native developers had to use the embedded Microsoft Visual C++ IDE for
application development. One of the benefits of this unification is that the Remote Tools that were
formerly in embedded Visual C++ but not in Visual Studio .NET 2003 are now included in Visual
Studio 2005 and available to both classes of developer (see Figure 4-1).

Figure 4-1. Access Remote Tools from the Start menu, under the Visual Studio group

[View full size image]

Remote Zoom In is very convenient for capturing bitmap screen shots from the device. An
often-used tool is the Remote Registry Editor, which allows the developer to access and modify
registry settings remotely on the target. Remote File Viewer is an alternative to Microsoft

ActiveSync technology for remotely accessing the file system on the target, including importing and
exporting. Remote Spy is similar to its desktop counterpart, and you can use it to browse the active
windows and what messages are sent to each window handle; it is not a tool you use every day,
but when you need it, it can be very handy. Remote Process Viewer is useful for viewing the list of
processes currently running on the target, the threads they own, and the modules that each one
has loaded; it can also be used to kill processes. Finally, the usefulness of Remote Heap Walker is
limited for managed development because managed developers are not generally concerned with
heap identifiers and flags for managed processes.

The Remote Tools help decrease the pain of developing on one computer (your PC) while running on
another (your device). Another tool that was made available with .NET Compact Framework version
2.0 Service Pack 1 is the Remote Performance Monitor (RPM). The RPM is described in Chapter 5,
"Understanding and Optimizing .NET Compact Framework Performance."

Device

Connection to a device is supported by ActiveSync (AS) version 4.x (or Microsoft Windows Mobile Device Center
(WMDC) on the Windows Vista operating system as discussed in Chapter 1, ".NET Compact Framework—a
Platform on the Move"). If you own a Windows Mobile–powered device, chances are you have already plugged it
into your computer with the universal serial bus (USB) cable and you have used ActiveSync. Both the software
and the cable ship in the box with every Windows Mobile–based device. ActiveSync allows connections by USB
typically but also allows Bluetooth, infrared, and serial connections (see Figure 4-2). After the connection is
established, the device can be targeted from Visual Studio.

Figure 4-2. ActiveSync 4.2 Connection Settings, accessible from the File menu

In Visual Studio, you can configure the connection to a real device on the Tools menu by selecting the Options
menu item. In the Options dialog box, scroll down to the Device Tools node, expand it, and select Devices. Select
your chosen platform (for example, Microsoft Windows Mobile 5.0 Pocket PC), select the Device from the list
(rather than the emulator), and finally click the Properties button. In the Properties dialog box, click Configure to
open the Configure TCP/IP Transport dialog box, as shown in Figure 4-3.

Figure 4-3. Visual Studio 2005 configuration of the device transport

[View full size image]

By default, debugging simply works out of the box with devices connected by ActiveSync, as the dialog box in
Figure 4-2 shows. When you deploy for the first time to a device that doesn't contain the .NET Compact
Framework, the framework binaries are pushed to the target, and then your application follows. To install the
.NET Compact Framework on your target manually, you must copy to the target the relevant .cab file (from
SDK\CompactFramework under your Visual Studio installation) and run it there. Depending on the device that
you use, you may see one or more security prompts. This is typical because your binaries are not signed, so
make sure you watch the device to allow the binaries to run.

For devices that do not support ActiveSync, that is, some custom Microsoft Windows CE–based devices, the
alternative is to connect directly over Transmission Control Protocol/Internet Protocol (TCP/IP) as follows:

1. First, prepare the device for the connection by copying the three .exe files and two .dll files from

Program Files\Common Files\Microsoft Shared\CoreCon\1.0\Target\ wce400\<CPU> on your

development computer to the Windows folder of your device.

2. Run the Conmanclient2.exe file on the device (it is one of the three files copied in the preceding step).

3. Then, in the Configure TCP/IP Transport dialog box (shown in Figure 4-3), tell Visual Studio to connect

to the IP address of the device.

4. If security is enabled on the device, you must also run cMaccept.exe on the device before attempting

to connect from Visual Studio.

Emulator

Connecting to the emulator, like connecting to a device over ActiveSync or WMDC, simply works out of the box.
Visual Studio 2005 includes emulators, for Windows Mobile 2003 Pocket PC and Smartphone. To use Windows
Mobile 5.0 emulators you must download the free software development kit (SDK). You can download many other
emulator images for specific device form factors. Emulators are released independently of the development
environment. You can download them from the Microsoft Download Center or follow links from the Windows
Mobile Developer Center Web site at www.microsoft.com/windowsmobile/developers/default.mspx. Emulators
from other vendors (for example, from Palm) are available for specific devices, and you can visit the vendor's
Web site to obtain those.

In Figure 4-3, observe how there are emulator options in the Options dialog box. If you select one and then click
Properties, a dialog box similar to the one in the figure appears. You may notice some differences in the
appearance of the dialog box, the main one being that an additional transport is available called DMA Transport.
DMA stands for Direct Memory Access, and it is the new default transport in Visual Studio 2005—think of it as
direct Component Object Model (COM) communication between processes without having to go through TCP/IP.
Not having to go through TCP/IP means that connections are faster and no additional configuration is required
when you are not connected to the Internet, for example, a loopback adapter that was required with Visual
Studio .NET 2003.

You can select the emulator you want to deploy when you run the project (for example, by pressing F5), or in the
Options dialog box (see Figure 4-3), or from the Tools menu (select Connect To Device), or in the project
properties window, or by using the Device toolbar in Visual Studio. You can see the last two options in Figure
4-4.

Figure 4-4. Selecting the emulator by using the project properties window or the Device toolbar

[View full size image]

Yet another way to start an emulator is by using the Device Emulator Manager. You can start this tool from the
Tools menu, as shown in Figure 4-5.

Figure 4-5. The Device Emulator Manager and the Tools menu (frequently referred to in this

chapter).

[View full size image]

One of the advantages of the Device Emulator Manager is that once an emulator is launched, you can cradle it by
using the Actions menu. With the cradling feature, you can test your applications as if they were running on a
real device with an ActiveSync connection. Also, when cradled, the emulator can connect to the Internet using
the computer's Internet connection. You can also use the ActiveSync Explore option to open an explorer window
and copy files to and from the emulator. Another benefit of the Device Emulator Manager is that you can install it
standalone on a computer that does not have Visual Studio installed, and this can be useful for testing and demo
purposes.

Finally, explore the emulator options. On the emulator's File menu, select Configure to open the Emulator
Properties dialog box, as shown in Figure 4-6. One useful option is the Shared Folder setting, which allows you to

treat a folder from a desktop computer as a Storage Card folder on the device, thus providing easy access to files
sitting on the desktop computer from the device.

Figure 4-6. Emulator Properties dialog box

[View full size image]

By downloading the Windows Mobile 6 SDK, you will also get Device Emulator V2 that among other useful
features is much faster than version 1. Visual Studio Code Name "Orcas" will ship with version 3 of the Device
Emulator.

Command-line debugging

One of the new .NET SDK tools in .NET 2.0 is a command-line debugger for managed applications,
Mdbg.exe (msdn2.microsoft.com/en-us/library/ms229861(vs.80).aspx). This enables debugging
applications without having Visual Studio installed on the desktop computer. Service Pack 1 of
version 2.0 of the .NET Compact Framework includes an extension for Mdbg called MdbgNetcf.dll
that you can use to debug devices from the command line. You can load the extension using the
Mdbg Load command as per the documentation in the preceding link.

Command-line debugging is the only supported way to debug managed code on targets that run
Windows CE 4.2 because Visual Studio 2005 does not support that platform any longer. It can also
be useful in other scenarios when Visual Studio is not available. Note that command-line debugging
with an emulator works only over the TCP/IP transport, not over DMA (you can select the transport
in the Options dialog box, as discussed earlier in this chapter).

For more information about command-line debugging and many other debugging tips and tricks,
see David Kline's blog at blogs.msdn.com/davidklinems/.

Best Choice

With deployment to either the emulator or the device being so easy, which method should a device developer
choose for everyday development? There is no right or wrong answer. If you don't have a device, clearly the
emulator is the only choice and it will serve its purpose well. For final quality assurance (QA) testing and user
acceptance testing, a device must be used for testing the interaction model, which on the emulator, without a
stylus, is not realistic enough. In debugging scenarios that involve close interaction with the hardware, a physical
device is probably best and in some cases essential. When you are measuring performance, always use a device
(for more on performance aspects, read Chapter 5).

An emulator serves the purpose of testing on form factors that you may not have available; for example, not
everybody has a square Windows Mobile 5.0 Pocket PC, or a landscape Windows Mobile 5.0 Smartphone, or a
Windows Mobile 2003 SE Pocket PC device. If your target devices include those, the emulators are good enough
for your everyday developing. You can also download localized emulators in other natural languages (for
example, Greek) and test on them your application if you do not have a device that supports the language you
need to test against.

Finally, some developers claim that developing on the actual device is faster, that is, deployment is faster and
hence development time is saved. This is true most of the time, but if you are running on a high-powered

computer and have allocated large amounts of random access memory (RAM) to the emulator and, more
important, you have downloaded the latest fast device emulator, that argument may not always be true.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Compile-Time Errors

In an ideal world, once the code is written, the developer would hit the Build button, and the computer would
find all possible errors. Unfortunately, although compilers are getting better at identifying potential issues in the
code beyond simple syntactical errors, they still cannot find all errors that may occur. The result is that after you
build a project and see no errors, you will find errors when you run the application. We discuss run-time errors in
the following sections, but because they are more expensive to identify and fix, you should strive to make the
compiler do as much work for you as possible.

Troubleshooting

The compiler errors and warnings are displayed in the Error List dialog box,
accessible from the View menu in Visual Studio 2005. Always start from the top
down in the error and warning lists. You can double-click the description to navigate
to the file and the exact line that causes the issue. Also, you can right-click the
entry and select Show Error Help to show more information in the built-in Help.
Finally, you can search for the exact error description (enclose it in double quotation
marks) using your favorite search engine; this will bring back results that discuss
the issue. In other words, you can find more information to understand the compiler
error in a short period of time using different methods.

One way to take advantage of compile-time diagnostics is to ensure that warnings in addition to errors are also
examined in the Error List (see Figure 4-7).

Figure 4-7. Error List dialog box

[View full size image]

In the project properties window, accessible from the Project menu, on the Build tab, set the Warning Level to 4.
Level 1 warnings are for situations in which the compiler is almost certain that there is an error but the code is
syntactically and semantically correct. Level 4 warnings are for cases in which the beginner developer may have
done something wrong and the compiler wants to make sure the developer acknowledges this. Level 2 and Level
3 warnings are for scenarios in between the other two extremes.

In Microsoft Visual Basic projects, the equivalent is the Compile tab, which contains a list of nine conditions for
which you can change the notification for each one. We strongly advise you to configure the first three and the
last five conditions to Error as per Figure 4-8.

Figure 4-8. The Compile tab in the Visual Basic project properties window

[View full size image]

If your Visual Basic project properties window does not look like the one in Figure 4-8, you are throwing away the
opportunity to catch errors at compile time and potentially deferring the errors to run-time issues that are
usually harder to diagnose.

You could set the fourth condition (Use Of Variable Prior To Assignment) to Warning, but it will yield so many
false positives that it will probably cause you more irritation than be of help. The feature was not fully
implemented to cover all possible conditions with no errors, and so, again, it can be helpful sometimes but not
always. It is, however, a promise of things to come! If you decide to set the condition to Warning or Error, look at
the following examples, which demonstrate the false positives to look out for:

Public Sub FalsePositive1()

 Dim s As String

 s = s & "why?" ' WARNING ?! - it is a valid statement

End Sub

Public Sub FalsePositive2()

 Dim o As Collection

 ' some other code here

 If o Is Nothing Then ' WARNING ?! - just checking if it is null

 o = New Collection()

 End If

End Sub

Public Sub FalsePositive3()

 Dim s As Object

 Me.GetValueByRef(s) ' WARNING ?!

 ' I don't want to initialize s. The function will.

End Sub

' If only Visual Basic had "out" like C# has

Private Function GetValueByRef(ByRef methodAssignIt As Object) As Boolean

 methodAssignIt = "some value to return"

 Return True

End Function

If you have one of the Visual Studio 2005 Team Edition versions, you can take advantage of another
compile-time aid called Code Analysis (formerly known as FxCop). In the project properties window, on the Code
Analysis tab, select the Enable Code Analysis check box. This produces additional warning messages that

generally help raise the quality of the code you write. For example, given this piece of code:

 public class MyType

 {

 public int NoOfWidgets; // CA1051

 public void DoSomething()

 {

 string s = "start";

 for (int i = 0; i < 30; i++)

 {

 s += "let's kill perf"; //CA1818

 }

 }

 }

you get at least these two warnings:

CA1818 : Microsoft.Performance : Change MyType.DoSomething():Void to use StringBuilder instead

of String.Concat or +=

1.

CA1051 : Microsoft.Design : Make 'NoOfWidgets' private or internal (Friend in VB, public private in

C++) and provide a public or protected property to access it.

2.

Unfortunately, the warnings are not tailored to smart device projects specifically, so some warnings will be
irrelevant and applicable only if you were writing code for the computer platform using the full .NET Framework.
In fact, even in full .NET Framework projects, do not strive to eliminate all FxCop warning messages because
they may not always be applicable to your specific goals. Having said that, there is still value to be gleaned from
Code Analysis in smart device projects, so do turn on the feature, even if it is used only occasionally and just
before you release code to your QA team.

Tip

To suppress FxCop warning messages per method, class, and even assembly, you
can use the System.Diagnostics.CodeAnalysis.SuppressMessageAttribute.
Right-click the warning and select Suppress for the attribute to be automatically
inserted. You can also turn off a specific warning completely or change it from a
warning to an error by using the project properties window.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Exception Handling: Same as the Full .NET Framework

After following the advice of the preceding section, you will have done the best you can to let the compiler find
errors for you before running the application. However, no application exists without issues and bugs manifesting
in two ways:

As logical errors where the application produces incorrect results and/or behavior (this is discussed in later
sections of this chapter)

As exceptions that get thrown at run time

We discuss the different kinds of run-time exceptions and how to deal with them in the following sections, but
first, we talk a bit about .NET exception handling.

Essentially, exception handling with the .NET Compact Framework is identical to exception handling with the full
.NET Framework. Exceptions are used for exceptional circumstances and not for normal flow of communication
(where return values and events are much better and faster alternatives). Exceptions are thrown and caught in
the same way using the familiar constructs of throw, try, catch, and finally. In Visual Basic, you can use the
when keyword, and even the legacy On Error GoTo/On Error Resume Next is supported. Just because it is
supported, though, doesn't mean you should use it! This advice is consistent with advice given for the desktop,
and one reason is because of performance implications. When some feature has negative performance
implications on the desktop, rest assured the issues will be more severe on mobile devices. For more information
about performance implications, see Chapter 5.

When an exception is thrown, it passes up the call stack from method to method. Each method has an
opportunity to handle the exception in a catch block and deal with it, or to let it bubble up, or to rethrow it, as
the following piece of nonrealistic sample code shows:

private void SomeMethod()
{
 // 1. There is no try..catch around this call, so if an
 // exception is thrown inside MethodThatMayThrow(),
 // let it bubble up to be handled by some method higher
 // up the call stack.
 this.MethodThatMayThrow();

 // 2. Rethrow.
 try
 {
 this.MethodThatMayThrow();
 }
 catch (Exception ex)
 {
 // Do something with the exception object, such as log it.
 LogException(ex);
 // or do something else such as cleanup in this code block,
 DoCleanup();
 // now rethrow to allow this exception to be handled elsewhere.
 throw;
 }

 // 3. Catch exception.
 try
 {
 this.MethodThatMayThrow();
 }
 catch (Exception ex)
 {
 // FULLY deal with this exception.
 RunSomeCodeSpecificToThisException();
 }

 // 4. Swallow.

 try
 {
 this.MethodThatMayThrow();
 }
 catch (Exception ex)
 {
 // Swallow, just so it doesn't go up to other methods.
 // DO NOT do this!
 }
}

Good exception handling advice from the desktop also applies to device development. Never, ever "swallow"
exceptions! When an exception occurs at run time, it has all the information you need to fix your bug: it has a
message, a type, and a call stack. By swallowing an exception, you are throwing all that information away.
Simply catching an exception and not doing anything about it leads to serious bugs that are hard to diagnose.
Even if your application seems to run fine after swallowing an exception, it is probably hiding corrupt state that
will lead to failures further down in the execution, and you will not be able to trace them back to the root cause.

Note

When catching an exception and then deciding to rethrow it, you should use the
throw; statement rather than throw ex;. The former preserves the call stack,
whereas the second resets it, thus losing important information. The code examples
in this chapter follow this guideline and serve as a good example to follow in your
code.

Another good practice is to catch specific exceptions. So, unlike the code example in the preceding section, the
calling code should know what type of exceptions to expect and specify them precisely in the catch block. For
example:

 private void UpdateTimer(ref System.Threading.Timer tmr)
 {
 try
 {
 tmr.Change(2000, 10000);
 }
 catch (ObjectDisposedException)
 {
 tmr = new System.Threading.Timer(...);
 tmr.Change(2000, 10000);
 }
 }

The only reason to catch the generic Exception object is so that you can perform some action and then rethrow it,
or because the code you are calling hasn't documented what types of exception it throws. Even in that latter
case, if your calling code decides to handle exceptions typed as Exception, it should be able to genuinely deal
with any kind of exception that is thrown! Of course, a try block can have more than one corresponding catch
block, and in that case, it is common to make the last catch block handle the generic Exception type, perform
some cleanup, and then rethrow (while the first catch block must handle the most specialized exception).

Warning

In the .NET Compact Framework, some circumstances yield exception types
different from the exception types for the same behavior on the full .NET
Framework, contrary to the online documentation. For example, the following piece
of code results in a TargetInvocationException exception (with the InnerException
property set to InvalidOperationException) on the desktop, whereas it results in an
InvalidOperationException exception under the .NET Compact Framework:

 private void button2_Click(object sender, EventArgs e)
 {
 Type t = this.GetType();
 MethodInfo m = t.GetMethod("DoIt");
 m.Invoke(this, null);
 }

 public void DoIt()
 {

 throw new InvalidOperationException("my msg");
 }

Warning

It is by design and as a result of footprint constraints. This becomes important
when you write cross-platform code trying to keep the same codebase. You must
catch both exception types so that the code can work as expected on both
platforms.

In previous sections, we talked about performing cleanup. This shouldn't be confused with the finally code block.
In earlier sections, cleanup refers to code that must run only when an exception is thrown, whereas in the finally
block you place code that must run always, regardless of whether there was an exception. Once again, the advice
for the desktop world holds true here: there should be more try..finally blocks in a program than there are
try..catch blocks. In other words, catch an exception only if you are able to handle it, while at the same time
always ensure your cleanup code will execute even if an unexpected exception or an exception that you are not
catching occurs.

Now that we reviewed the exception handling construct in .NET and offered some advice, it is time to look at
run-time exceptions in detail.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Runtime Exceptions

If an exception is not caught and dealt with, you have an unhandled run-time exception. Figure 4-9 shows what
that may look like to the end user on a Pocket PC.

Figure 4-9. Built-in error dialog box shown for an unhandled run-time exception: the option to

quit the application (left); the results after clicking Details (right)

[View full size image]

In the section titled "Exception Handling: Same as the Full .NET Framework" earlier in this chapter, a rule was
established: Never swallow exceptions. The second rule is: Run-time exceptions are something that the user
should never see. In the following sections, we describe how to follow the rule by discussing the following:

How to debug and find the cause of an exception

Why any unhandled exception is the developer's fault

How to avoid the exception being thrown in the first place

How to deal with the exception if it is unavoidable that it will get thrown

Global exception handling, the hard way

If you noted the advice earlier in the chapter never to swallow exceptions, it is easy to deduce that unhandled
run-time exceptions should never occur.

Diagnosing the Cause of the Exception

Although the end user should never see unhandled run-time exceptions, as discussed in the next section, a
regular developer will see quite a few exceptions while debugging and testing applications.

Typically, a developer writes code, makes sure it compiles, and then runs the project in Visual Studio with the
debugger attached by pressing the F5 key (or selecting Start Debug on the Debug menu). If while the code is
executing on the target, an exception gets thrown, the debugger breaks in Visual Studio in the code file and on
the exact line that caused the exception to be thrown. For example, if you observe a NullReferenceException on
the second line in the following piece of code, it is easy to deduce that you forgot to initialize obj, and it is easy
to rectify; for example, obj = new SomeClass();:

...
SomeType obj = null;
obj.SomeMethod(); // NullReferenceException
...

Here is another example. The following code causes an InvalidCastException, and the debugger stopped on the
problem line, as shown in Figure 4-10.

 private void AnotherMethod(SomeClass obj)
 {
 ((ISomeInterface)obj).DoIt();
 }

Figure 4-10. An unhandled exception while attached to the debugger that goes straight to the

offending line of code

[View full size image]

Just by looking at the name of the exception and the line of code, oftentimes you can make a "guesstimate" as to
where the problem is. In some cases, though, further investigation is required. For example, in the preceding
example code, you may guess that SomeClass does not implement the ISomeInterface interface. Based on that
assumption, the code can change to the following, but it still throws an exception:

 private void AnotherMethod(SomeClass obj)
 {
 ISomeInterface i = obj as ISomeInterface;
 if (i != null)
 {
 i.DoIt(); // still throws here!
 }
 else
 {
 // Do something else!
 }
 }

Because the same exception is still thrown at the same line, it should be clear that the exception is actually
coming from somewhere deeper, and in this case the DoIt method itself.

Tip

This simplified example demonstrates how joining multiple lines of code into one
line is not clever and instead may hinder debuggability. It is best to split such lines,
which also aids readability.

The DoIt method and the SomeClass type reside in an external library, and hence the debugger breaks in the line
of code that makes the call. However, you could have identified that the first time without any code changes
simply by looking at the call stack. When the debugger stopped on the line of code farther up in the first
example, you should have also looked at the Call Stack window, as shown in Figure 4-11.

Figure 4-11. The Call Stack window, useful in debugging

[View full size image]

Notice how the call stack shows both the lines of code in the program and also lines of code from other libraries
that are unavailable. At the top of the stack, it would have been easy to spot that the DoIt method is the source
of the exception.

Tip

In Figure 4-11, notice how there are other windows that can assist with debugging.
You can access these on the View and Debug menus in Visual Studio. A discussion
of what each does is beyond the scope of this book, but we encourage you to learn
what they do by reading the Visual Studio documentation.

The call stack is also accessible on the device if you run the application without the debugger attached (for
example, by executing the .exe file directly). If you run the application on the target, the built-in error dialog box
that the user sees for unhandled exceptions has a Details button. Click the Details buttons to show the call stack,
as shown in Figure 4-12.

Figure 4-12. Built-in error dialog box for unhandled exceptions: the Details view showing the

call stack—of no use to end users but useful for developers while debugging

[View full size image]

In version 2.0 of the .NET Compact Framework, the call stack is also available programmatically through the
StackTrace property of the Exception class. If the code is modified as follows, the output window will show the
call stack (see Figure 4-13).

 private void AnotherMethod(SomeClass obj)
 {
 try
 {
 ((ISomeInterface)obj).DoIt();
 }
 catch (InvalidCastException ex)
 {
 // Log the exception to file.

 Debug.WriteLine("The stacktrace: \r\n" + ex.StackTrace);
 // Take some real recovery action!
 }
 }

Figure 4-13. Exception.StackTrace that returns a string that in this case is printed to the Output

window

[View full size image]

It Is Your Fault

Now that you know how to find the cause of an exception, you must ask: Why do unhandled run-time exceptions
occur? The fact is, and some find this controversial, unhandled run-time exceptions occur as a result of
programmer error. With the exception of catastrophic common language runtime (CLR) exceptions such as
OutOfMemoryException, StackOverflowException, or ExecutionEngineException, the developer should be able to
write code that avoids any other exception from being thrown or at least to write code that gracefully handles the
exception.

When do exceptions occur? The answer is obvious, but by emphasizing it, you can better understand the
statement of the preceding paragraph. Exceptions occur as a result of a coding statement, typically a method
call. Before you make a method call, you know all the different kinds of exceptions that the method can throw
and you also know why they have been thrown. You know this because it is either documented (if it comes from
Microsoft or a third party) or because you wrote the method in the first place (and have remembered to
document what exceptions it might throw). Even for methods that are not fully documented, your testing should
have stressed the method to discover what type of exceptions it may throw, and therefore allow you to write the
calling code in a way that deals with them. If after deployment you discover an alternative type of exception,
that simply means you didn't test thoroughly enough. Have a look at every statement you've written in your code
and ask the question: "Could that line of code result in an exception?" If the answer is positive, rethink how you
can avoid the exception.

Avoiding Exceptions Getting Thrown

Consider the following code sample:

 private void DoSomethinginterestingWith(string path)
 {
 FileStream fs = File.Open(path, FileMode.Open);
 // Do something interesting with fs.
 }

That line of code makes assumptions—and assumptions may lead to exceptions. The code assumes that there is
actually a file at the path that it is given. Indeed, if you couldn't guess this, you can get help by looking at the
documentation that lists the possible exceptions that can be thrown, one of them being a FileNotFoundException.
One naïve and wrong way to fix this is to change the code to look like this:

 private void DoSomethinginterestingWith(string path)
 {
 try
 {

 FileStream fs = File.Open(path, FileMode.Open);
 // Do something interesting with fs.
 }
 catch (FileNotFoundException ex)
 {
 // TODO deal with the invalid input
 }
 }

This catches the exception and deals with it. However, the exception could have been avoided altogether by
writing the statement the correct way, like this:

 private void DoSomethinginterestingWith(string path)
 {
 if (File.Exists(path))
 {
 FileStream fs = File.Open(path, FileMode.Open);
 // Do something interesting with fs.
 }
 else
 {
 // TODO deal with the invalid input
 }
 }

The preceding pattern is very common. Most times, you can avoid a try..catch by replacing it with an if
statement. Recall that this is also the first line of defense in the example in the preceding section with the
InvalidCastException.

Handle the Exception and Recover Appropriately

Of course, in some scenarios it is impossible to code in a way that avoids exceptions getting thrown from method
calls you make. In those cases, you have a choice to make. Either let the exception bubble up the stack if you
cannot handle it or actually handle and deal with the exception. At the beginning of this section, there is an
example dealing with an exception with a Timer that threw an ObjectDisposedException. Here you'll see a couple
more.

You can deal with an exception by translating the exception to some change in state. The following piece of code
shows how the method raises a custom event for a specific exception condition, propagates up an exception for
another condition, and logs any other unexpected exception before letting it also bubble up:

 private void ConnectToThis(IPEndPoint ep)
 {
 Socket s = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);
 try
 {
 s.Connect(ep);
 }
 catch (SocketException)
 {
 // Translate exception to own custom event.
 if (CantConnect != null)
 CantConnect(this, EventArgs.Empty);
 }
 catch (ArgumentNullException)
 {
 // IPEndPoint passed in is null. Pass it up, caller's fault.
 throw;
 }
 catch (Exception ex)
 {
 LogException(ex); //our own logging method
 throw;
 }
 }

Another way to handle the preceding is by using a return result:

 private bool ConnectToThis2(IPEndPoint ep)
 {
 Socket s = new Socket(AddressFamily.InterNetwork,

SocketType.Stream, ProtocolType.Tcp);
 try
 {
 s.Connect(ep);
 return true;
 }
 catch (SocketException)
 {
 // Translate exception to return result.
 return false;
 }

As in the first example, the exception was translated to some state change, this time notifying the calling code
by returning a value. The principle is always the same: Never swallow an exception; either deal with it fully or let
it bubble up so some other method has a chance to deal with it or continue to let it bubble up.

A variation of letting the exception bubble up to the other layers is wrapping it with another exception and
throwing that one instead. Wrapping an existing exception with another one can be useful when you want the
calling code to get a more meaningful exception than what it would do otherwise. In this case, you can either use
a different framework exception that makes more sense or create your own custom one. In the previous socket
example, if you did not want to translate the exception to some state, you could opt to throw your own
CantConnectException rather than let the SocketException bubble up, as the following example shows:

private void ConnectToThis3(IPEndPoint ep)
{
 Socket s = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);
 try
 {
 s.Connect(ep);
 }
 catch (SocketException ex)
 {
 // Wrap existing exception with more descriptive one.
 throw new CantConnectException(ex); //Nest the existing exception.
 }
... ...

Always remember that exceptions are not an alternative to events and return values for communicating between
methods. Only throw an exception (your own or an existing one) if there is nothing sensible for the method to do
instead. When you are certain that throwing an exception is the right action but cannot decide if you should
throw an existing one or your own, throw the existing one.

Protecting the Boundaries (or Global Exception Handling, the Hard Way)

By examining your code statements and method calls, you can avoid exceptions altogether (that is, use a
conditional instead), deal with them (that is, translate the .NET exception to some meaningful state in your
business logic), or let them bubble up. If you let an exception pass up the call stack and no method handles it
eventually, what is the result? The result is an unhandled exception that the user sees, which is what you want
to eliminate. You can make sure users do not see unhandled exceptions by following the guidance in this section.

Some methods are special in that they are the ones that "protect the boundaries." Boundary methods are
candidates for being the root method in a call stack:

An event handler of a graphical user interface (GUI) control, for example, a button click. These protect the
user interface (UI) boundary; in other words, they are the entry points of your main UI thread. An
exception that escapes one of these methods (one that bubbles up right out of the top of the call stack)
will appear in the UI in the built-in error dialog box.

The first method on which a thread runs. An exception that escapes the first thread method will appear in
the UI in the built-in error dialog box.

Event handlers from external libraries that provide input to your application. If you are handling an event
from a third-party library and you throw an exception, the exception will pass up the call stack into the
library's root method. How it will then deal with that exception is out of your hands. You should not let the
exception escape your boundary.

Boundary methods are special for two reasons. The first one is that they cannot let any exception bubble up any
farther up the stack because the next level up is the end user. So identify every method that fits the preceding
criteria and wrap its entire method body with a try..catch statement. In the catch block, log the exception
because it was an entirely unexpected exception, inform the user, and gracefully exit the application. In some
rare circumstances, particularly for methods that are event handlers of GUI controls, you may decide that it is
safe to let the application run. In other words, you may decide that the application is not in an indeterminate

state and hence there is no reason to exit. Note that just because boundary methods have a try..catch block
around the entire method body does not mean that they should not have inner try..catch blocks around methods
that may throw specific exceptions. That is to say, the exception handling added to boundary methods is a last
resort, a safety net for catching your own mistakes.

The second reason these methods are special is that they must protect the rest of the application from invalid
input. So validate every piece of input to these methods before executing any logic. If some input violates the
preconditions of the method, do not proceed with calling other internal methods. If it was a user action, for
example, invalid entry in a text box, let the user know.

Consider the previous example with the Socket.Connect again. This time, look at the method that calls the
ConnectToThis method, and presume it is called from a menu click:

 private void menuItem2_Click(object sender, EventArgs e)
 {
 IPAddress ipAddress = this.GetIpAddressSomehow();
 int port;
 port = Convert.ToInt32(textBox1.Text);
 IPEndPoint ipe = new IPEndPoint(ipAddress, port);
 this.ConnectToThis(ipe);
 }

Now, based on the preceding advice, this is a boundary method and hence it must not let any exception bubble
up. After you have analyzed the method, you can make these changes to achieve that end:

private void menuItem2_Click(object sender, EventArgs e)
{
 IPAddress ipAddress = this.GetIpAddressSomehow();

 if (ipAddress == null)
 {
 MessageBox.Show("Sorry could not get ip address.");
 return;
 }

 int port;
 try
 {
 port = Convert.ToInt32(textBox1.Text);
 }
 catch (FormatException)
 {
 MessageBox.Show("Please provide a valid port number.");
 return;
 }
 IPEndPoint ipe = new IPEndPoint(ipAddress, port);

 try
 {
 this.ConnectToThis(ipe);
 }
 catch (CantConnectException ex)
 {
 MessageBox.Show("Sorry, could not connect");
 }
}

Notice how various pieces of advice given in this chapter so far have been applied and in addition, because it is a
boundary method, you have not let any exception bubble up.

The final task, because this is a boundary method, is to protect against your own bugs or in this case against
your own potential incomplete analysis of the boundary method and all the methods that it calls. Remember this
point because we refer back to it in the section titled "Global Exception Handling" later in this chapter. This
means wrapping the whole method for unexpected exceptions:

private void menuItem2_Click(object sender, EventArgs e)
{
 try
 {
 IPAddress ipAddress = this.GetIpAddressSomehow();

 if (ipAddress == null)
 {

 MessageBox.Show("Sorry could not get ip address.");
 return;
 }

 int port;
 try
 {
 port = Convert.ToInt32(textBox1.Text);
 }
 catch (FormatException)
 {
 MessageBox.Show("Please provide a valid port number.");
 return;
 }

 IPEndPoint ipe = new IPEndPoint(ipAddress, port);

 try
 {
 this.ConnectToThis(ipe);
 }
 catch (CantConnectException ex)
 {
 MessageBox.Show("Sorry, could not connect");
 }
 }
 catch (Exception ex)
 {
 LogException(ex);
 MessageBox.Show(
 "An unexpected error has occured. Please shut down this app.");
 ExitApplication();
 }
}

You can see that if you did this for all your boundary methods, no exception would ever escape the application.

Note

For class libraries, the definition of boundary methods extends to all public methods
of all public classes, that is, the entry points to the class library. The same
guidelines apply, except instead of notifying the user and/or exiting the application,
class libraries should throw an appropriate exception to their external caller. In this
instance, class libraries also cover the notion of layers. As a class library developer,
remember that all exceptions that leave your boundaries should be logged.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Global Exception Handling

One of the most requested features from the .NET Compact Framework team was the ability to catch unhandled
run-time exceptions globally in a single place. This has always been possible in the full .NET Framework, but is
not fully possible in .NET Compact Framework version 1.0. Before we look at those, though, and more important
before we show how version 2.0 of the .NET Compact Framework delivers on the popular request, it is worth
evaluating what the purpose of global exception handling (GEH) really is.

The purpose of GEH is to log all unhandled exceptions and not to allow any of them to escape to the user. You
will recall this is the second rule of exception handling as established in the section titled "Runtime Exceptions"
earlier in this chapter. If you are looking for global exception handling for recovering from unhandled exceptions,
no framework can provide that. With the definition of this paragraph in place, the astute reader will not be
surprised by the following paragraph.

Global exception handling is something that you can implement already on all versions of .NET simply by
following the guidelines discussed earlier in this chapter, and particularly in the section about boundary methods.
From boundary methods, and in particular from the catch blocks of those methods, you can log the exception to
file before informing the user and exiting the application.

So our advice is for you to achieve global exception handling the hard way, protecting all your boundary
methods, because this will force you to analyze all the entry points to your application and encourage you to take
appropriate specific action on a case-by-case basis. Having said that, not everybody wishes to be as rigorous,
and so an easier way of achieving global exception handling that is not as complete as the boundary methods
approach is described next.

GEH on the Full .NET Framework

On the full .NET Framework, you must do three things to catch all exceptions:

Wrap the call to Application.Run with a try..catch block.

Handle the Application.ThreadException event.

Handle the AppDomain.UnhandledException event.

Because this is a mobility book, there is no point in getting into the mechanics of these steps, but if you would
like more information, see the article titled "Unexpected Errors in Managed Applications" on the Microsoft MSDN
Magazine Web site at msdn.microsoft.com/msdnmag/issues/04/06/NET/default.aspx.

GEH in NET Compact Framework 1.0

As mentioned earlier, GEH in the .NET Compact Framework 1.0 is not fully possible. This is partly because the
two events Application.ThreadException and AppDomain.UnhandledException, used in the full .NET Framework,
are not available. Furthermore, wrapping the call to Application.Run with try..catch works for exceptions thrown
on the main UI thread but not completely for exceptions thrown on worker threads. (For more on threading,
please see Chapter 11, "Threading".) In addition, exceptions thrown in a method that was called by using
Control.Invoke from a worker thread will hang the application. In our opinion, this issue alone renders the
attempt for GEH with version 1.0 of the .NET Compact Framework not worth exploring. If you must achieve GEH
with version 1.0 of the .NET Compact Framework, your only choice is to use the approach discussed earlier about
protecting the boundary methods.

GEH in .NET Compact Framework 2.0

The good news is that version 2.0 of the .NET Compact Framework fixes the issue mentioned previously and in
fact makes GEH even easier to achieve than on the desktop! Although the Application.ThreadException event is
still not available, the AppDomain.UnhandledException is available and, unlike the desktop version, does catch
every type of exception so that no complementary actions are needed. The following example demonstrates:

static class Program {

 [MTAThread]

 static void Main() {

 // Add global exception handler.

 AppDomain.CurrentDomain.UnhandledException +=

 new UnhandledExceptionEventHandler(OnUnhandledException);

 Application.Run(new Form1());

 }

 // In .NET Compact Framework case only,

 // ALL unhandled exceptions come here.

 private static void OnUnhandledException(Object sender,

 UnhandledExceptionEventArgs e) {

 Exception ex = e.ExceptionObject as Exception;

 if (ex != null) {

 // TODO write the ex.ToString() to file

 return; // exit

 }

 }

}

Tip

Visual Basic developers should take the advice of Chapter 2, "Building a Microsoft
Windows Forms GUI," and use a Program.vb file for specifying the startup form just
as C# projects do by default. It is then a simple modification, as noted in the
preceding code example, that offers global exception handling.

Note that after your method is called, your application has very limited time before it actually exits automatically,
so there is no point trying to salvage the situation or even putting a UI up for the user. Simply log to file the
unexpected exception. This should help you fix the bug in the next version of your software. To be clear, you
should never design your application to solely rely on this method to be called—it should be called only for
exceptions that you were simply not expecting, that is, bugs in your code.

GEH Choice: Single-Method vs. Multiple-Method Approach

To be clear, using the single method AppDomain.UnhandledException is a much simpler alternative to protecting
the boundary methods but not as powerful. To reinforce the point, remember the last change made in the
example in the section titled "Boundary Methods" earlier in this chapter. A catchall handler was added to the
method, and from there you would exit the application after logging some details and informing the user.
Consider the amount of information you have about the state of the application in that method should you want
to be detailed in your report to the log file and/or in the message you present to the user. Then consider the
results if you do not do that and instead use the single-method approach. All you get in your
AppDomain.UnhandledException handler is the exception with the stack trace. Very useful indeed, but not as
detailed as what you can get using the multiple-method approach. Another drawback of the single-method
approach is that you incur a time limit before the application automatically exits, whereas by using the boundary
methods approach, the choice is yours.

You may find it very tempting to follow this single-method approach rather than putting the effort into protecting
multiple methods. It is debatable if the benefits outweigh the complexity, but you, dear reader, now understand
both approaches and can formulate your opinion. Our opinion is that the boundary methods approach is the best
approach, and the AppDomain.UnhandledException should be used as the ultimate backup—in addition to and
not instead of.

Informing the User and Getting the Log Files Back

Two questions arise that have similar answers: "How do I inform the user of the error?" and "How do I get the
log files to examine?" A simple, yet effective approach is to do so the next time your application is started. Every
time your application is started, check to see whether a GEH log file was generated by the application last time.
If so, move the log file to a different (archive) folder so that the next time the application is started your check
for the file fails as expected. After that, apologize to the user for the application crashing last time, and ask the
user to send you additional information so that you can diagnose and fix the issue encountered. In the UI, you
could point users to the archive folder so that they can get the log file and send it to you (by whatever means
you or they see fit).

An even more helpful UI simply offers a button that when clicked (by the user) automatically sends the log files
back to you (the developer). The communication medium could be File Transfer Protocol (FTP; you would have to
use a third-party solution because FTP libraries are not available in the .NET Compact Framework) or a Web
Service call (on your server, you can host a Web service that accepts your log files). Another method is simply to
send the log files attached to an e-mail message. Programmatically, sending e-mail messages with attachments
is very easy on devices that run Windows Mobile 5.0 and later. See Chapter 17, "Developing with Windows
Mobile," for the six lines of code required to accomplish that.

You can offer an even greater user experience that addresses two issues of the preceding approach:

When your application crashes, the user must start it again manually.1.

The user does not see what happened to your application until after he or she starts it again.2.

If you don't find these issues important enough to address, you'll be glad to learn that the better solution comes
at the cost of extra complexity and, in particular, by introducing an additional process (.exe file) that you must
distribute with your application as part of your package. This .exe file is what you start from your GEH method,
and it is this process that immediately apologizes to the user and offers the option of sending the log file to you.
After it sends the log files, it launches your application ready for users to continue where they left off before the
application crashed.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Some Exceptions Worthy of Further Mention

Most exceptions are self-describing. For example, it is apparent in an ObjectDisposedException that your code
attempted to use an object that has already been disposed of. Other exceptions that are self-explanatory include
InvalidArgumentException, InvalidCastException, and NullReferenceException.

Whenever you catch an exception whose type and message are not enough to fully describe the problem, always
check whether it exposes any custom properties that can help. A nonexhaustive list of examples of such
exceptions includes WebException, SocketException, and SqlCeException. After these three, another set of four
exceptions deserve special mention: InvalidOperationException, MissingMethodException, System.Resources.
ManifestResourceException, and TypeLoadException.

WebException

The System.Net.WebException is a great example of an exception class where the exception type alone does not
tell you what the precise error is. You must further explore its other two properties.

The WebException.Status property is typed as the WebExceptionStatus enumeration, and it has 16 possible
values that usually are enough to inform you of precisely what the error is, for example, Timeout,
NameResolutionFailure, ConnectFailure.

In some cases, it is necessary to query the WebException.Response property for more information. The
WebException.Response property returns a WebResponse object. The WebResponse object has a StatusCode
property typed as HttpStatusCode enumeration that has dozens of possible values that you can use to precisely
determine the return code, for example, NotFound (404), Unauthorized (401), Moved (301). For a list of all the
possible values, look up the enumeration in the MSDN Help or in the Object Browser in Visual Studio.

Following is a short code example:

 try

 {

 HttpWebRequest wr =

 (HttpWebRequest)WebRequest.Create(textBox1.Text);

 HttpWebResponse rsp = (HttpWebResponse)wr.GetResponse();

 label1.Text = rsp.StatusCode.ToString();

 rsp.Close();

 }

 catch (WebException ex)

 {

 if (ex.Status == WebExceptionStatus.ProtocolError)

 {

 if (ex.Response != null)

 {

 label1.Text =

 ((HttpWebResponse)ex.Response).StatusCode.ToString();

ex.Response.Close();

 }

 }else{

// TODO handle other status values

}

 catch (Exception ex2)

 {

 Debug.WriteLine(ex2.Message);

 }

 }

SocketException

Another exception that has an additional property that helps identify the cause of the exception is the
System.Net.SocketException class. When you work with sockets, the crucial bit of information that points to the

error is the native error. The SocketException class returns the native error through its integer ErrorCode
property, for example, 10060 (ConnectionTimedOut) or 10061 (ConnectionRefused).

You can look up the descriptions for all the socket errors on the Microsoft Help and Support Web site at
support.microsoft.com/default.aspx?scid=kb;en-us;819124.

SqlCeException

Like SocketException, System.Data.SqlServerCe.SqlCeException is a wrapper for native errors. Its NativeError
integer property returns the first native error, but to obtain all of them you should iterate the Errors property,
which returns a collection of SqlError objects. The SqlError class has a NativeError property to help you narrow
down the precise reason the exception was thrown, and you can potentially get additional information by using
its other two properties: ErrorParameters and NumericErrorParameters.

A short code example follows:

try

{

 // some SqlCe operation

}

catch (SqlCeException e)

{

 for (int i = 0; i < e.Errors.Count;i++)

 {

 SqlCeError error = e.Errors[i];

 if (error.NativeError == 29045)

 {

 // TODO handle specific error

 }else{

 // Check for other errors.

}

 }

}

For more information, see the section titled "Deciphering SqlCeExceptions" in Chapter 3, "Using SQL Server 2005
Compact Edition and Other Data Stores."

InvalidOperationException

The System.InvalidOperationException may seem to have a cryptic name at first, but the name is actually fairly
accurate when you realize what it is conveying. Whenever you encounter this exception as a result of a method
call, check the state of the object on which you are trying to perform the action. The documentation for the class
of the object will detail under what circumstances it is invalid to perform the action that you are attempting. For
example, it is illegal to attempt to modify a collection while it is being iterated. Another example is trying to
open a serial port when it is already open. So remember to check the state of the object and its documentation
whenever one of its methods throws this particular exception.

System.SR.dll

When working on the full framework, developers are accustomed to examining the error messages
associated with each exception (by using the Exception.Message string property). Because
exceptions are not intended to propagate up to the user, these messages are only an aid for
developers while debugging. On the .NET Compact Framework, these exception strings have been
moved to a resource assembly (System.SR.dll) to conserve space.

When deploying from Visual Studio, you should deploy this assembly as well, but do not rely on it
for your production environment. Any attempt to access the exception strings when the
System.SR.dll is not on the device results in a "Could not find resource assembly" message. If you
observe this while debugging, do not confuse it with the actual exception that caused this message
as a side effect!

Do not deploy System.SR with your application installation because you should never let an
unhandled exception bubble up to the UI, as discussed earlier. If you still feel that you must deploy
it, you must deploy the System_SR_<locale>.cab file (or System_SR_<locale>_wm.cab for
Windows Mobile 5.0–powered devices) instead of the .dll file directly, to avoid violating the End
User License Agreement (EULA).

MissingMethodException

The System.MissingMethodException is usually observed when you use Platform Invocation Services (PInvoke;
see Chapter 14, "Interoperating with the Platform," for more information about PInvoke). This is a good example
of the importance of checking the Message property of the exception to identify the issue exactly. Consider the
following two declarations:

 [DllImport("ws22.dll", SetLastError = true)]

 public static extern Int32 sethostname(byte[] pName, Int32 cName);

 [DllImport("ws2.dll", SetLastError = true)]

 public static extern Int32 sethostnamee(byte[] pName, Int32 cName);

Calling either of those results in a MissingMethodException, which means that the method could not be found. If
you examine the Message for the exception for each case, you find the exact reason for each case:

"Can't find PInvoke DLL 'ws22.dll'"

"Can't find an Entry Point 'sethostnamee' in a PInvoke DLL 'ws2.dll'"

Tip

Rather than exercise all the code paths in your application to test your PInvoke
declarations, on startup of your application during testing you can call the
Marshal.PreLinkAll static method once for each class that contains DllImport
declarations. It will throw an exception if any of your declarations are wrong.

After identifying the misnaming, in most cases it is obvious what the correction should be. If it isn't, you can use
the Dumpbin or Depends.exe tools to assist you further with the exact naming of the exported function. For more
on interop, including the aforementioned tools, see Chapter 14.

MissingManifestResourceException

In online forums, developers have made many requests for help regarding the
System.Resources.ManifestResourceException. Fundamentally, most developers seem to get the fully qualified
name of the resource (for example., image in a PictureBox) incorrect, especially in Visual Basic projects. So if you
do encounter this error, the first thing to do is inspect the assembly to check what the correct resource names
are. To do this, search your computer for a tool named Ildasm.exe, which comes with the .NET Framework SDK,
and start it. Then, from the tool, locate and open your assembly. Double-click the Manifest label with the red
triangle in front of it, and scroll to the bottom of the window that opens to read the embedded resource names.

TypeLoadException

A TypeLoadException is self-describing in that it indicates a failure to load a type, for example, a class. This
typically means that the assembly is not present on the target where the runtime expects it to be, for example,
in the applications folder or in the global assembly cache (GAC). It is worth mentioning, though, another
common cause of this exception: trying to use a desktop assembly on the device. Unfortunately, under certain
circumstances, it is possible in Visual Studio to reference an assembly built against the desktop framework or
indeed a desktop framework assembly. Although you may get away with it in Visual Studio, it will not work at
run time and is categorically an unsupported scenario. An example of such an exception in a Visual Basic project
is: Could not load type Microsoft.VisualBasic. CompilerServices.ProjectData from assembly Microsoft.VisualBasic,
Version=7.0.5000.0, Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A. Regardless of whether you are
using Visual Basic or C#, you can tell from the exception string that the application has tried to directly or
indirectly load a desktop assembly on the device. You can tell because the PublicKeyToken is a desktop PKT.
Desktop framework assemblies start with a B, whereas device assemblies start with a 9.

For more help with diagnosing TypeLoadException exceptions, always refer to the loader log, discussed in the
following section.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

The Log Files

The .NET Compact Framework runtime version 2.0 can create diagnostic text files on the target while your
application is running. These log files contain information that can help debug four areas: loading, interop,
networking, and error.

Before looking at each area, you must enable logging globally through the registry on the device. Use Remote
Registry Editor or some other device registry editing tool of your choice.

Navigate to HKLM\Software\Microsoft\.NETCompactFramework\. If it doesn't exist, create a key

named Diagnostics. Under that key, create a key named Logging.

1.

Under the Logging key, create a new DWORD value: Enabled. Set it to 1. Logging is now enabled.2.

Optionally, create three additional DWORD values (described later) as shown in Figure 4-14.

Figure 4-14. Remote registry with logging keys and values configured

[View full size image]

3.

The UsePid and UseApp values ensure that the log file names generated are distinguishable from other log files of
other managed applications and from other runs of the same application. The Flush value ensures that writes to
the log file are not delayed and hence, if your application ends abruptly, no log entries are missed.

To activate a log file with loader information, in addition to the steps outlined earlier, you must perform the
following:

1. Under the Logging key, create a new key called Loader.

2. Under the Loader key, create a new DWORD value called Enabled, and set it to 1.

After this, every time your application exits, a new log will be created: netcf_APPNAME_Loader_PID.log.

To enable additional log files for network, interop, and error, you must also create three additional corresponding
keys under the Logging key: Network, Interop, and Error. Under each one of these newly created keys, create a
new DWORD value called Enabled and set it to 1.

Every time your application encounters an exception or other unexpected behavior, you can open the log files
and examine the contents for clues. The easiest way to open the files is to transfer them from the device to your
development computer (for example, by using Remote File Explorer or the ActiveSync explorer) and open them
there in your preferred text editor, such as Notepad.

Logging hinders the run-time performance of your application, and so it is advisable that you turn logging on
only in debugging scenarios and not in production environments. After you have created the registry keys and
values described here, you can set an individual Enabled value to 0 to turn off logging of that area; for example,
set HKLM\Software\Microsoft\ .NETCompactFramework\Diagnostics\Logging\Network\Enabled value to 0 to
disable network logging. To turn off logging of all areas for your device, simply set the HKLM\ Software\Microsoft

\.NETCompactFramework\Diagnostics\Logging\Enabled value to 0.

Loader Log

In simplistic terms, every time your managed application creates an object or uses a value type or calls a static
method and so forth, the runtime has to locate the assembly that contains the type and load it. Every time this
fails, an exception is thrown. Should that exception be missed (swallowed or masked by another exception), the
log file can help. If the runtime fails to find a member of a type (MissingMethodException or
MissingFieldException) or the type itself (TypeLoadException), you can see the history of the assemblies that
were loaded along with the one that failed that ultimately led to one of the run-time exceptions mentioned
previously. The assembly loading information includes public key tokens, versions, and path locations that the
runtime probed to find the assembly. In other words, you can get rich information that otherwise is not available
anywhere else. If you are familiar with the fusion log on the desktop, this is the closest equivalent.

Seeing what a loader log file looks like is left to you as an exercise. Simply run any managed application on the
device and copy the log file to the desktop for examination. To observe erroneous entries, perform the following
steps:

1. From a smart device application project, reference a smart device class library project. In a button

Click event handler, create a class from the class library.

2. Deploy and debug the project from Visual Studio onto the target. Collect the log file.

3. On the device, browse to the application folder and delete the .dll file. Run the .exe file directly, click

the button, and observe the crash. Collect the log file and note the differences from the log file

collected earlier.

Interop Log

Even though version 2.0 of the .NET Compact Framework plugs many of the gaps in version 1.0, developers
occasionally still need to call into native methods in Windows .dll files by using Platform Invocation Services
(PInvoke). This is covered in detail in Chapter 14.

When things go wrong with PInvoke (or COM interop), various exceptions may be thrown (for example,
DllNotFoundException, EntryPointNotFoundException), and in other scenarios, marshaling errors may just lead to
incorrect results. The interop log is an aid to diagnosing marshaling errors by listing every interop method in
both its managed signature and the unmanaged equivalent. Sometimes the unmanaged equivalent can help
developers identify an incorrect declaration.

Again, seeing what an interop log file looks like is left for you as an exercise. Simply run any managed
application that performs PInvoke calls on the device and copy the log file to the desktop for examination. For
examples of such managed applications, see the ones provided in Chapter 14.

Network Log

Network logs gather rich information about networking activities. Unlike all the other log files, they do not
contain just American Standard Code for Information Interchange (ASCII) data and they do require a parser to
decrypt some of the binary data found therein. In Service Pack 1 of .NET Compact Framework 2.0, such a tool
exists. Search your computer for the Logviewer.exe application and run it. You can use this tool to open a
network log file and examine its contents, namely, the packets that are sent and received.

Attaching to a debugger

In some scenarios, you must debug an application that is already running on a device but that has
not been started with Visual Studio. What you must do is attach to the running process on the
device from Visual Studio. This is possible, but only if the capability has been explicitly activated.
You can configure this setting through the registry. Use Remote Registry Editor with the device
connected to create a key called Managed Debugger under HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\.NETCompactFramework\ (Figure 4-14 shows this). Under that key, create a DWORD
value called AttachEnabled, and set it to 1.

Then, on the Visual Studio Debug menu, select Attach To Process to open the relevant dialog box.
In the dialog box, change the Transport to Smart Device, and from the Qualifier combo box, select
your device. In the list, select your managed process, and then click the Attach button.

Like the logging options, this setting negatively affects the performance of all managed applications
on the device, and so turn it on only when you expect to have to attach to debug the application.

Error Log

The error log is available only with version 2.0 SP1 and later of the .NET Compact Framework. It was added to
help with debugging headless devices, but of course you can use it for devices with displays as well. Recall the

built-in error dialog box that the .NET Compact Framework opens for unhandled exceptions in your application?
It is described in earlier sections of this chapter, and you can see what it looks like in Figure 4-9 and Figure
4-12. The error log is simply a textual version of this dialog box.

Finalizer Log (Version 3.5)

In the version 3.5 of the .NET Compact Framework that will ship with Visual Studio Code Name "Orcas," there
will be an additional log type: the finalizer log. The usefulness of the finalizer log is that it shows which objects
are being finalized, which means you omitted calling their Dispose method. This helps with performance tuning
because letting an object be finalized rather than explicitly disposed hinders performance. We discuss finalizers
and performance in Chapter 5.

The .NET Compact Framework team has briefly described this new finalizer log on its blog Web site at
blogs.msdn.com/netcfteam/archive/2006/12/18/NetCF-3.5_2700_s-Finalizer-Log.aspx.

Remote Performance Monitor

Service Pack 1 of .NET Compact Framework 2.0 includes a new tool to use primarily for measuring the
performance of managed device applications. We discuss Remote Performance Monitor (RPM) thoroughly in the
next chapter, so please visit that for more information.

But it is worth noting here that from RPM and specifically from the Device menu, you can open the Logging
Options dialog box, which you can use to make some of the registry configurations described earlier. Figure 4-15
will whet your appetite.

Figure 4-15. Remote Performance Monitor Logging Options dialog box accessed from the Device

menu

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Instrumentation

Errors that do not result in an exception but rather make the application exhibit incorrect behavior are called
silent logical errors. To investigate such errors, you must add to your real code extra debugging code that
informs you of the code's internal state. This is also known as instrumenting your code.

Before we look at instrumentation, it is important to review a fundamental debugging concept: breakpoints.

Breakpoints

When you observe unexpected results while testing your application, you will have an idea approximately where
in your code the error occurs. Maybe you can guess the method or the class that causes the error. In a
worse-case scenario, you'll be able to guess which boundary method is called when the undesired behavior is
exhibited. Knowing where to start debugging means that you can review the code and run it mentally in your
head to see where the issue with your logic lies. If that exercise does not prove fruitful, the next step is to set a
breakpoint on a line of code and to run the project under the debugger. Execution of the program halts when the
debugger reaches the line with the breakpoint, and you are now able to examine the state of your variables and
identify where the logic as coded is flawed after single-stepping each line of code.

Tip

In Visual Studio 2005 and .NET Compact Framework 2.0, you can change the
statement that is executed next because the Set Next Statement command is
available. However, the desktop feature Edit and Continue is not yet available.

Consider the following code, which is simple; you can imagine a more complex realistic scenario if you want:

 private void menuItem1_Click(object sender, EventArgs e)

 {

 ArrayList ar = new ArrayList(4);

 ar.Add(new MyType(1));

 ar.Add(new MyType(1));

 ar.Add(new MyType(2));

 ar.Add(new MyType(0));

 ar.Add(new MyType(1));

 this.DoSomething(ar);

 }

 private void DoSomething(object o)

 {

 ArrayList col = (ArrayList)o;

 int lastObject = col.Count - 1;

 int total = 0;

 for (int i = 0; i < lastObject; i++)

 {

 total += ((MyType)col[i]).NoOfWidgets;

 }

 MessageBox.Show("Total = " + total);

 }

that uses this class:

 public class MyType

 {

 public int NoOfWidgets;

 public MyType(int widgets)

 {

 NoOfWidgets = widgets;

 }

 }

When you run the code, you observe that the total is short by 1. You can set a breakpoint in the line that
calculates the total and assigns it to the variable, and then single-step on each iteration to find out where the
issue is. Figure 4-16 shows the breakpoint and the Locals window after the fourth iteration.

Figure 4-16. Breakpoints in Visual Studio

[View full size image]

On each iteration, you can mentally note the value of total and what it should be after you step into it based on
the value of the NoOfWidgets. On the fourth iteration, everything is as predicted so that the values of your
objects are as they were when you passed them in; the total variable was incremented each time as expected.
However, when you step in to evaluate the variables on the next iteration, you notice that the execution does not
go through the loop and instead moves on to the statement with the message box. Looking at the i variable
confirms the suspicion that the loop exits prematurely because of an incorrect condition on the line with the for
statement. Changing it to the following fixes the problem:

 for (int i = 0; i <= lastObject; i++)

Tracepoints

Even in the simplistic example described in the preceding section, it is tedious to hit the breakpoint and step into
the code to examine the variables. In more complex scenarios, the approach described would take longer than it
is worth. An alternative is not to break execution of the running program and instead to output to the Visual
Studio output window the variables of interest. This is also useful for multithreading scenarios in which
breakpoints make it less than ideal to debug a piece of code that is traversed by multiple threads
simultaneously. You can output variables to the Visual Studio output window by using a feature called
tracepoints. A tracepoint is a breakpoint with a print message and the option to continue execution
automatically. It is a new feature in Visual Studio 2005.

To create a tracepoint, right-click a breakpoint in the code editor or in the Breakpoints window, and select When

Hit to open the When Breakpoint Is Hit dialog box, as shown in Figure 4-17.

Figure 4-17. Tracepoints in Visual Studio

You can configure the behavior of the breakpoint by selecting or clearing the check boxes in the dialog box. The
appearance of the breakpoint will become diamond-shaped rather than circular when both options are selected.
When the line of code that contains the tracepoint is hit, the message you enter in the Print A Message text box
is printed to the Visual Studio output window and execution continues. Like with breakpoints, tracepoints take
effect before the line of code executes. So if you enter the following in the Print A Message text box, when you
run the project, the output window displays the message shown in Figure 4-18:

Iteration {i}:The 'total' is {total} and I will now add {((MyType)col[i]).NoOfWidgets}

Notice how you can extract the same conclusions as you can by using the breakpoint approach but much more
quickly and without stopping execution of the program.

Figure 4-18. Output window in Visual Studio following run with tracepoint

[View full size image]

Debug.WriteLine

The traditional mechanism for outputting helpful debug messages that externalize the internal variable state of
your running application is by using the System.Diagnostics.Debug class and its WriteLine method. With Visual
Studio 2005, this method now works as expected for device projects as well. The following code example shows
how you can change the code method to use this approach:

 Debug.WriteLine(

 String.Format(

 "Iteration {0}:The 'total' is {1} and I will now add {2}",

 i,

 total,

 ((MyType)col[i]).NoOfWidgets

)

);

 total += ((MyType)col[i]).NoOfWidgets;

Although the Debug.WriteLine statement is spread over eight lines of code, you can see how it achieves the exact
same effect as the tracepoint. The difference is that it is now clear what the code does, and the debugging
information has the same lifetime as the code file it is associated with. Tracepoints do not add verbosity to the
code but are best suited for short-lived debugging tasks that are not expected to be used beyond the particular
debugging session in which they are introduced.

Note that the Debug statements have effect only in builds where the DEBUG conditional compilation constant is
defined. When the DEBUG constant is not defined, the statements have no effect and hence do not affect
performance either because they are not compiled into the binary. You can inspect the constants defined in the
project properties window on the Build tab (in Visual Basic, the Compile tab). For an example that uses the
DEBUG constant directly in code, see the code in the MyTrace class mentioned in the following section.

Tracing to File

The techniques discussed in the three previous sections are all great when you can establish a connection from
Visual Studio to the target. If you need to gather such information about the internal state of your application
while it is running somewhere other than your development computer, for example, on a beta tester's device,
you should log all the debug information to file. In fact, you will certainly want to add some kind of logging
support to your application so that you can get diagnostic information from your customers' devices from around
the world.

On the desktop, many logging frameworks exist but very few work with device projects. One product that does
work with the .NET Compact Framework is log4net, but we do not explore it in this book. Most of the .NET

Framework classes that facilitate building such infrastructures are absent from the .NET Compact Framework, for
example, the Trace class has only 3 members compared with its desktop counterpart, which has around 40! This
changes with version 3.5, which ships with "Orcas," where not only the Trace class is significantly enhanced but
also the TextWriterTraceListener class is added. Having said that, you still need a solution today when targeting
version 2.0 or even version 1.0 of the .NET Compact Framework.

Consider what the specification for a class that logs to file is. It should write the debug information to a file as
well as output it to the Visual Studio console if connected; thus, it can be used instead of Debug.WriteLine and it
also offers value when not connected by Visual Studio. It should behave accordingly when the DEBUG and TRACE
constants are not defined and be further configurable so that performance is not affected if you do not need the
diagnostic information. Ideally, it should be small so that it can be easily included in projects, for example, a
single class with a collection of static methods. Its use would be something like the following examples in pseudo
code:

MyTrace.Info("ClassName: MethodName", "Diagnostic msg");

MyTrace.InfoIf(SomeCondition, "ClassName: MethodName", "Diagnostic msg");

MyTrace.Warning("ClassName: MethodName", "Diagnostic msg");

MyTrace.WarningIf(SomeCondition, "ClassName: MethodName", "Diagnostic msg");

MyTrace.Assert(SomeCondition, "ClassName: MethodName", "Diagnostic msg");

MyTrace.LogError("SomeMessage");

MyTrace.LogError(SomeException);

You can find an example of such a class that satisfies the preceding specification online at
www.danielmoth.com/Blog/2004/11/debugwriteline.html.

As you can see, there are three levels of diagnostic information—at one extreme, it can be very verbose,
outputting INFO, WARNING, and ERROR, whereas at the other extreme, it can output just ERROR information.
Typically, the ERROR level logs unrecoverable exceptions such as from your global exception handler. The
WARNING level is used for code paths that were unexpected and for exceptions that your code thinks it has
recovered. Finally, you can use the INFO level for tracing into and out of methods, thus creating a call stack in
the file. Typically, you deploy the application with ERROR and WARNING on and instruct the user to turn on INFO
only when trying to diagnose a situation.

Once the log file is created on the device, you could automate its retrieval by following the same suggestion
discussed in the section titled "Global Exception Handling" earlier in this chapter.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Unit Testing

Unit testing is only one of the many good practices that became popular with agile and test-driven
methodologies such as XP and SCRUM. At its most basic, a unit test is a code test method that tests an actual
code method of your application.

For every method you write in your application, you have one or more corresponding unit test methods. Your goal
is to run all the unit tests at set intervals or events, for example, daily or every time you check in code to source
control or every time you build. If all unit tests run and pass, you know that all your code works as expected. Of
course, for this to happen you must always include unit tests for every new method that you add to ensure 100
percent code coverage.

Unit tests are invaluable for detecting code changes that break existing functionality. That is, if a unit test passed
before but then fails after you make some code changes, it means you have introduced a bug somewhere. By
examining which unit test fails, you can pinpoint the buggy method.

Unit testing is interesting from a nontechnical perspective as well; some very vocal advocates of the technique
go so far as to claim that they never debug applications, they just run unit tests! This means that your code
quality is only as good as the quality of your unit tests. Regardless of what approach to development you take,
having unit tests for your code is a good thing. Without going to extremes, unit testing is certainly something
that must be part of a good developer's arsenal. It is beyond the scope of this book to go into detail about unit
testing, but it is our goal simply to make you aware of the options of using unit testing in smart device
development.

Unit testing requires tool support. It requires a framework on which to base the actual tests and test results, and
it requires some way of automatically deploying the unit tests to the device and running them on there while
recording the results on the desktop. Of course, nice IDE integration is also important.

Community Project

Version 1.0 of the .NET Compact Framework and Visual Studio .NET 2003 provide no support for unit testing. An
open source project called CFNunitBridge (use an Internet search engine to find more details) attempted to fill
this gap, but support for it ended fairly abruptly before it evolved into an easily used tool. Nevertheless, the code
is accessible to anyone who would like to put effort into developing it further.

Deploy to My Computer

In 2005, with the release of Visual Studio 2005, unit test support was included in the more recent versions of
Visual Studio, but the support is only for the full .NET Framework and not for device projects. However, you can
unit-test your device code by running it on the desktop. Follow the instructions for unit testing given in the
documentation, and when you run the tests your device code will be executed on the desktop against the full
.NET Framework.

When you unit-test your device applications against the full .NET Framework, you cannot test any libraries that
use device-specific functions, and any attempt do so results in exceptions. Even if you have used only the
compatible namespaces, types, and type members, any differences in the runtimes and implementations of the
framework methods skew the unit test results. In addition, you are not able to test anything that relies on the
device environment because the code is running on the desktop.

Patterns and Practices

In 2006, the patterns & practices team from Microsoft released the Mobile Client Software Factory package, as
mentioned in Chapter 1. The code for all the application blocks is available, as are unit tests for all of them. This
is achieved mainly by a GuiTestRunner utility that the team wrote in conjunction with a unit testing framework
you can also use for your own code. With the unit testing framework, you can run unit tests on the target by
driving a GUI on the target. The roundtrip communication from device to desktop isn't that great, but at the time
of writing it is the best solution for your unit test needs.

Visual Studio Code Name "Orcas"

The subsequent version of Visual Studio after 2005 is code-named "Orcas" and will include full support for unit
testing for devices. The experience will be identical to unit tests for the desktop except that the tests will run on

the device (but still be controlled, reported on the desktop). When "Orcas" becomes available, its documentation
will cover the details. If it has not shipped by the time you read this, feel free to download the Community
Technology Preview (CTP) of "Orcas" to preview this feature. There is a brief description on the Visual Studio for
Devices blog at blogs.msdn.com/vsdteam/archive/2006/11/12/unit-testing-for-net-compact-framework.aspx.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

This chapter explains how to test and debug your applications and offers strategies for catching errors and fixing
bugs. It describes the tools and features available to you in Visual Studio 2005 and .NET Compact Framework
2.0, and it discusses best practices you can use to design solutions with managed languages such as C# and
Visual Basic. The main points of advice to take away are the following:

Use the compiler to its fullest so that you can catch potential errors very early.

Never swallow exceptions.

Never let an unhandled exception be presented to the user in the in-built error dialog box.

Analyze your boundary methods so that no exception goes uncaught.

On .NET Compact Framework 2.0, handle the AppDomain.UnhandledException event for
exceptional scenarios that you missed on the previous point.

The next chapter explains how to identify performance bottlenecks and how to write efficient code for mobile
devices, which by their nature are constrained in both memory and power.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 5. Understanding and Optimizing .NET Compact

Framework Performance

In this chapter:

What Every Developer Should Know 189

Understanding the Compact CLR Engine 191

.NET Compact Framework Performance Statistics 197

Measuring Performance Programmatically 210

Performance Guidance 213

Despite massive improvements at the hardware and operating system levels, mobile devices are still constrained
in their raw power, and that makes performance considerations all the more important during device
development. Also, given that these devices run on battery, the old adage "do as little as possible" is essential
not only for performance reasons but for power preservation reasons as well.

This chapter discusses the principles of writing well-performing code. The key to achieving good performance is
to set performance goals early in the development process, understand how the common language runtime
(CLR) manages memory, and avoid coding practices that create unnecessary garbage in memory. It is also
important to understand what the runtime is doing when your application is running and how to get the runtime
to do as little as possible.

What Every Developer Should Know

In some circles, developers are obsessed with making processes as fast as possible, applying every optimization
thinkable, and making high performance the driving factor in design decisions without consideration for anything
else. That is wrong. Your code should run "fast enough." The goal is to identify what fast enough is for your
application.

For example, if your application takes 3 seconds to run a certain action (for example, connecting to a server to
verify login credentials) and the users are happy with that, investing time to make that action faster is not a
good use of resources. In this situation, the required performance level of the use case implementation has been
identified in the user acceptance criteria. Meeting required performance levels for user acceptance should be the
only driver in determining how fast your code must run. If you need more factors to help in that determination,
consider the following questions: How fast did the previous version run? How fast do similar competing products
run? Again, the only criterion you must consider in deciding whether to optimize a code path should be if users
are happy with the speed. If your product is faster than whatever method users were using before (including
manual processes) and is equally as fast as other similar applications, there really is no point in optimizing
further.

When you write feature specifications, you should include specific minimal and ideal performance requirements
and avoid using just descriptive text such as "this function must be fast" to describe how a feature must
perform. Unfortunately, many developers write vast amounts of code only to find out at the last minute that their
code is not fast enough, and only then do they try to optimize the code, hoping for performance improvements.
You must specify performance requirements and enumerate expectations of stakeholders early in the
development process to avoid nasty surprises later. Part of your test cycle should be to continuously measure the
performance of those features to establish if they are in line with the specifications and if any code modifications
have negatively affected the results.

Well-performing code does not happen as an afterthought—performance is designed into an application. For
example, consider a feature that populates a ListView with entries. You implement the feature, and then find that
it takes an unacceptably long time to load 10,000 items. Should you then profile individual methods to try to
optimize the code or should you reconsider the design? The process of loading 10,000 items on a constrained
device will perform badly regardless of how you write the code. Even if you were prepared to pay the
performance penalty for such a decision, does it make sense to require users to scroll through thousands of items
on a device where only a dozen items can be visible on the screen at any one time? The solution, of course, is to
design the feature for performance by default: load only 100 to 200 items at a time, and load more as the user

scrolls down, or offer buttons to navigate to the previous and next pages, splitting the data alphabetically or by
category or by some other characteristic.

It is better to focus first on perceived performance (for example, time it takes for the wait cursor to appear after
the user clicks a button) than it is to focus initially on actual performance (for example, time to load a form).
Design your application so that users are continuously given feedback about their actions. It is amazing how
users will insist that one application is faster than another when both applications take the same time to
complete an action but the one that is perceived as faster offers visual feedback. For example, you can place a
ProgressBar on the screen, show the busy cursor, or update the status bar with intermediate messages to keep
the user informed of progress rather than expecting the user to stare at a blank screen waiting for an action to
complete. Intermediate feedback is important and may not be available for all actions unless you design for it
early. For example, it may not be acceptable for search results to appear on-screen 10 seconds after a user taps
a search button. However, if every 2 seconds the list is populated with intermediate search results, the complete
search may even take 15 seconds and still be perceived as fast by the user.

So far, we have given generic advice that applies to any software development project. The other piece of advice
we offer is that you must always understand the characteristics of the platform on which you are working. This is
especially true with the Microsoft .NET Compact Framework. Almost every optimization trick you come across
makes sense when you understand the common language runtime (CLR) of the .NET Compact Framework.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Understanding the Compact CLR Engine

In software, developers usually must make a trade-off between fast code and code that uses little memory. That
is, certain design decisions can err on the side of faster performance that consumes a lot of memory (for
example, by caching results in memory) or processes can be slower and use very little memory (for example, by
spending central processing unit cycles calculating certain results every time they are asked for). Under the
compact CLR, trading random access memory (RAM) usage for speed doesn't always work. You must write code
that is both memory-efficient and fast at the same time. To understand why, you must understand the inner
workings of the garbage collector (GC) and the just-in-time (JIT) compiler, also known as the JIT compiler or
JITter.

The descriptions that follow are high level, with a focus on what affects performance rather than full coverage of
the CLR. We aim to simplify as much as possible the mechanics at the cost of details.

JIT Compiler

When you compile Microsoft Visual Basic or C# code, the binaries that are produced (that is, the .exe or .dll file)
do not contain native central processing unit (CPU) instructions and instead contain intermediate language (IL)
code. At run time, the JIT compiler further compiles each IL method into native code, which then is executed. It
is important to note that JIT compiling occurs per method and only when the method is requested to execute.
When the method is called, a check is made to see if there is native code for the method. If there is, the native
code is executed; if there isn't any native code, the JIT compiler compiles the IL code to native code, which is
then associated with that method entry (stored in an in-memory cache), and of course then the native code is
executed.

Every time a method is JIT compiled, there is a performance cost. To minimize the cost, try to reduce deep
method call hierarchies or really long methods or recursion because the JIT compiler works best with short code
paths. On the desktop CLR, the cost is paid only once because the generated native code for the method is
associated with the method for the lifetime of the application run. This is different from the compact JIT compiler
surfaces: The native code that is generated by the compact JIT compiler can be thrown away at run time in
certain circumstances, such as when the system comes under severe memory pressure. This is known as code
pitching. Should pitching occur, the obvious effect is that the JIT compiling performance penalty is paid more
than once per method. See the section titled "Garbage Collector" later in this chapter for more information about
pitching.

Another difference from the desktop CLR is that there is no support for native images. In other words, you cannot
use the Ngen tool from the software development kit (SDK) to generate native images at install time, which in
turn would mean the JIT performance penalty would not be paid at run time. This is because a native image is
three to four times larger than a managed assembly is, so the footprint implications are severe when you
consider that the .NET Compact Framework version 2.0 libraries alone are almost 5 megabytes (MB).

Inlining

The JIT compiler includes an optimization feature called method inlining. This means that some methods can be
inlined to the calling method. The calling method's body grows to include the body of the inlined method, thus
avoiding making the method call altogether. All this happens at the machine code level after the IL has been JIT
compiled. If you were to picture the effects of inlining at the managed code level, it would look something like
the following two methods:

 public int CallingMethod()

 {

 // code that performs some task A

 this.SomeOtherMethod();

 // code that performs some task C

 }

 private void SomeOtherMethod()

 {

 // code that performs some task B

 }

At run time, they become a single method, that is, SomeOtherMethod is inlined and doesn't exist separately:

 public int CallingMethod()

 {

 // code that performs some task A

 // code that performs some task B

 // code that performs some task C

 }

The compact JIT compiler inlines only the most basic of methods; realistically it happens only for simple accessor

methods, that is, properties. Rules determine whether a method can be inlined.[1] Note that method inlining is
an internal implementation detail subject to change, and you should not design your application specifically with
inlining in mind; however, it might be useful to keep performance-critical methods as simple as possible to give
them a better chance of being inlined. Certain types of methods are never inlined, however; these are virtual
methods.

[1] To be inlined, a method must have 16 bytes of IL or less, no branching (typically an if), no local variables, no exception

handlers, no 32-bit floating-point arguments, and no return value. Also, if the method has more than one argument, the

arguments must be accessed in order from lowest to highest (as seen in the IL).

Virtual Methods

Tip

Virtual methods are methods that are marked as virtual in C# and Overridable in
Visual Basic. They are one of the building blocks that facilitate the elegant design of
object hierarchies that can result in polymorphism, that is, the ability of a method
in an inherited class to redefine the behavior of a method in a base class. The ability
for a method to be redefined does come at a cost, which is why it is not enabled by
default.

With the compact JIT compiler, virtual method calls are approximately 40 percent more expensive[2] than are
nonvirtual method calls! Although we do not advise designing your solution based on this fact, an important
aspect here is that virtual methods are not subject to inlining. Be particularly careful about defining virtual
properties because properties are in fact methods despite any superficial differences. For example, consider the
following two methods, which are identical except one calls a virtual property and the other calls an identical
nonvirtual property:

[2] The compact JIT compiler does not use a v-table, which means that virtual methods must be interpreted the first time they

are called, rather than just looked up.

 private int myVar = 1;

 public int MyProperty

 {

 get { return myVar; }

 set { myVar = value; }

 }

 private int myVVar = 1;

 public virtual int MyVirtualProperty

 {

 get { return myVVar; }

 set { myVVar = value; }

 }

 public void Test1()

 {

 int total=0;

 for (int i = 0; i < 1000000; i++)

 {

 total += this.MyProperty;

 }

 MessageBox.Show(total.ToString());

 }

 public void Test2()

 {

 int total =0;

 for (int i = 0; i < 1000000; i++)

 {

 total += this.MyVirtualProperty;

 }

 MessageBox.Show(total.ToString());

 }

If you run the preceding code, notice that Test2 performs worse than Test1 does. On a Pocket PC device that
runs Microsoft Windows Mobile 2003 Standard Edition, Test1 takes 240 milliseconds in debug and 45
milliseconds in release mode; Test2 takes 320 milliseconds in debug and 190 milliseconds in release mode. If

the code is built in debug mode, the performance difference will be smaller than the performance difference
when the code is built in release mode (release mode is faster than debug mode is overall, of course). In debug
mode, the difference in performance is because the virtual call is inherently slower, and in release mode the
effect worsens because only the nonvirtual property benefits from inlining.

Garbage Collector

The garbage collector is responsible for allocating objects and freeing objects when they are no longer
referenced. One of the biggest claims of programming in a managed environment is that you do not have to
think about memory management. However, that claim is not exactly true: although memory management is
taken care of for you, if you design an application with no consideration for memory usage, the application will
probably perform badly. So you do have to think about memory management, but in a way different from how
you do in native code. Before we analyze memory usage of an application, it will help to explain the garbage
collector's role with respect to performance.

Windows CE and Windows Mobile memory management

As a managed developer, if the CLR performs its duties, you should not worry about memory
management. Having said that, we call out a few useful points that some managed developers
come across occasionally. Under Microsoft Windows CE, only 32 processes can be running, and after
you realize how many processes run on a Windows Mobile–powered device by default, you can see
how easy it is to reach that limit. Also, each process has only 32 MB of virtual address space, so, for
example, if you load large bitmaps into memory in your application, don't be surprised if you run
out of memory even though the device in total has free memory to use. The restrictions on number
of processes and virtual address space are issues that native and managed developers must be
aware of and design for. Note that in Windows Embedded CE 6.0, both limitations have been
removed, but there isn't a Windows Mobile version running on Windows Embedded CE 6.0 yet.

Also note that when a Windows Mobile–powered device is running low on memory, it will send a
WM_HIBERNATE windows message to applications, starting with the longest inactive one and
stopping after it has sufficient resources. When the applications receive that message, they should
dispose of any resources that are not absolutely necessary. If the system still needs to free memory
resources after sending WM_HIBERNATE messages, it starts shutting down applications first by
sending a WM_CLOSE message and then by calling TerminateProcess if necessary, again stopping
after it has sufficient resources. When a managed application receives a WM_HIBERNATE message,
a full garbage collection will take place. If your application can additionally free references that are
active, it should do so by handling the Microsoft.WindowsCE.MobileDevice.Hibernate event (new in
version 2), after which a full garbage collection will run.

If you are interested in understanding Windows CE memory management, see the article titled
"Windows CE .NET Advanced Memory Management" on the Microsoft MSDN Web site at
msdn2.microsoft.com/en-us/library/ms836325.aspx. If you are interested in further understanding
the internals of the CLR and what its cost model is against Windows CE, see the blog titled ".Net
Compact Framework Advanced Memory Management" on Mike Zintel's Weblog Web site at
blogs.msdn.com/mikezintel/archive/2004/12/08/278153.aspx.

When a new object is created, a memory block in RAM is required to store the contents of the object. That place
is called the heap, and each process has its own. From your code you have a reference to where your object
storage starts in the heap. This reference, also known as a handle or a pointer, is stored on the stack and is 4
bytes long on 32-bit systems, such as Windows CE. In nonmanaged environments, when the program needs a
new place in memory to store an object, work has to be done to find an appropriate address in the heap with a
large enough contiguous memory block to hold the object. When the object is no longer needed, it is the
developer's responsibility to write code that explicitly deletes the memory held by the reference. How does that
compare with managed code?

Allocating objects under the garbage collector is an extremely fast operation, generally faster than in unmanaged
environments, because the garbage collector preallocates a portion of the heap and continues to increment the

heap in 64-KB segments[1] as more objects are created. In other words, the space has already been allocated,
and every time a new object creation is requested, an internal pointer is moved to the next available address,
ready for the next object.

[1] Should a single object require more than 64 kilobytes (KB) on its own, a segment for that entire object is created the exact

appropriate size.

How about freeing objects in managed code? Freeing objects is known as a garbage collection (more details on
this later). A collection is not an inexpensive operation, even on the full framework, where garbage collection
details differ from the compact version. A garbage collection takes place on the thread that happens to be
running when the collection is needed, and all other thread activity is paused. In simplistic terms, think of your
application freezing while a collection takes place. Typically, this freeze is for a few milliseconds but, depending
on how often collections take place, can have a negative impact on your application.

Six conditions can trigger a garbage collection:

A cumulative 1 MB of heap data has been allocated since the last collection (in version 1.0, this value1.

is 750 kilobytes).

Your code calls GC.Collect.2.

Your application is moved to the background.3.

A failure to allocate memory for a managed object occurs.4.

The System.Drawing subsystem receives an out of memory error when trying to allocate an

unmanaged resource.

5.

Your application receives a WM_HIBERNATE message.6.

Warning

It is important to understand and unequivocally accept that calling GC.Collect in
production code is never a good idea. It is very expensive and it will probably not
have the effects you hope for. This is as true on the Compact Framework as it is on
the full .NET Framework. Generally, the system knows when it needs to do a
collection, and because every collection involves freezing your application threads
and walking the heap—even if there are no unreachable objects to collect—you may
just be introducing more freezes in your app and not actually freeing any memory.

When a collection occurs, the garbage collector identifies the dead objects and marks their heap space as
available. If the objects have a finalizer, they are moved to another queue, where their finalizer method is

executed by the finalizer thread; their memory is reclaimed the next time the garbage collector runs.[1] The
process described in this paragraph is known as a simple collection.

[1] A finalizer is a method that, when implemented for an object, runs before the object is collected by the garbage collector. Its

purpose is to free any resources that the object may have, excluding managed references. A finalizer is almost always

implemented in conjunction with the Disposable pattern, described later in this chapter.

In addition to the preceding actions, as part of the collection a compaction may occur depending on heap
fragmentation. A compaction is the movement of all live objects to a contiguous block at the beginning of the
heap, while the unused memory blocks from the end are freed to the operating system. This is known as a
compact collection.

Finally, in addition to the preceding actions, code pitching may occur (as defined in the section titled "JIT
Compiler" earlier in this chapter) as part of the garbage collection. The result is that, apart from the methods of
the current call stack, all others must be JIT compiled again when they are next called. This is known as a full
collection and is triggered by any of the last four conditions in the preceding list. A full collection also shrinks the
heap, which in all other cases would remain at 1 MB (if it had reached that size).

What does all this mean? Most of the conditions that precipitate garbage collection are beyond your control, but
at least you can understand when a collection will occur and exactly what it will do. You can do nothing about
your application switching to the background or if other applications on the device stress the overall available
memory. However, in those cases you still pay the penalty of re-JIT-compiling methods in your application. Apart
from those two conditions, you can avoid the rest by not allocating objects. The more objects you allocate, the
more garbage is created and the more collections have to run, thus increasing the chances of paying the re-JIT-
compiling cost and contributing to overall garbage collector latency. The garbage collector latency is directly
proportional to the number of objects in your application because identifying which objects are live and which
aren't involves traversing the heap. A generic principle holds true on this platform more than on any other: less
code is faster code. You will see in a later section how to use performance counters to help identify whether any
performance bottlenecks are caused by garbage collections.

Version 1.0 to Version 2.0 Improvements

Figures 1-10 and 1-11 in Chapter 1, ".NET Compact Framework—a Platform on the Move," summarize some of
the performance improvements in different versions of the framework.

The bottom line is that every aspect of the .NET Compact Framework is faster in version 2.0 compared with
version 1.0. The product team invested significant effort in reviewing both the engine and the libraries and
optimizing them for our benefit. The JIT compiler was completely rewritten with performance in mind, the
garbage collector algorithm was fine-tuned, the speed of making method calls was improved, and core scenarios
such as calling Web services and accessing data were optimized. Not only will the same application run faster
under version 2.0 than it did under version 1.0, but application startup is also vastly improved. In short, one of
the major reasons for moving from version 1.0 to version 2.0 isn't just the additional functionality, but so that
your applications can run faster (see Chapter 1, ".NET Compact Framework—a Platform on the Move").

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

.NET Compact Framework Performance Statistics

After you have identified a performance issue with some aspect of your application, the next step is to diagnose
which bit of code is responsible. In a managed environment, this isn't always straightforward because an engine
is doing some work for you (as described in the preceding section) and there is a lot of code in the framework
libraries not under your control; for example, you may create a single framework object, but that object may
create another 10 objects on your behalf. It is for this reason that the .NET Compact Framework can generate
performance statistics (or counters) that you can then examine for clues.

Performance statistics are available in .NET Compact Framework 1.0, but they are significantly enhanced in
version 2.0: There are many more counters, they can be generated for more than one running application at a
time, and they can be updated while the application is running, whereas in version 1.0 you must wait for your
application to exit cleanly. Finally, version 2.0 includes a tool for viewing the data called Remote Performance
Monitor (RPM), as described later in this chapter.

Activating Performance Counters

Performance counters are activated in the registry, much like the logging files discussed in Chapter 4, "Catching
Errors, Testing, and Debugging," and particularly in the section titled "The Log Files." On the device, use Remote
Registry Editor as explained in Chapter 4 to navigate to the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft
\.NETCompactFramework key, and create a key under it named PerfMonitor. Under this newly created key, create
a DWORD value named Counters and set it to 1. Note that this will affect the performance of your application and
should be turned off by setting the Counters value to 0 when you do other performance tests or in a production
environment.

Note that if you connect Remote Performance Monitor to your device as described in a later section, you can
activate and disable the counters simply by selecting or clearing a check box. See Figure 4-15 in Chapter 4, and
notice the Generate .stat Files option.

Viewing the Data

After you activate the counters, every time you run your application on the device, a file named
<application_name>.stat is generated at the root of the device. When your application exits, you can copy the
.stat file from the device to your development computer and open it in Notepad or another text editor. You will
see seven columns. The first column is a list of counter names, 63 in total. The other six columns show the data
for each counter. Not every column is applicable for every counter and, when that is the case, rather than a
number, a hyphen is shown. The six columns (with a friendlier name in parentheses) are as follows: total (Total),
last datum (Last Value), n (Sample Count), mean (Average), min (Minimum), and max (Maximum). Figure 5-1
shows a heavily edited .stat file in which many counters have been deleted.

Figure 5-1. .stat file in Notepad showing some random counters

[View full size image]

The .stat files can also be opened using the Remote Performance Monitor tool. On the File menu, select the Open
.stat menu item (as explained in a later section). The next step is for you to understand all the counters.

Performance Counter Descriptions

The 63 counters of the .stat file can be grouped in 10 categories. In fact, when viewed in the RPM tool, they are
grouped in 10 categories and helpful descriptions are shown for each counter. The following sections discuss the
categories and counters, and the figures show the counter descriptions, so descriptions of each counter are not
repeated in the text. One method of understanding these counters is to collect a .stat file from your own
application and look at real data while reading the following subsections.

Loader

Figure 5-2 supplies the description of the counters for the CLR loader. Typically, you will have one AppDomain
loaded, and you can calculate how many assemblies are loaded if you analyze your project. The number of
classes and methods loaded would be a mystery if it were not for these two counters. They are a good indication
of an application's size. The larger the numbers, the more metadata that must be kept in memory by the
runtime. Use this information together with the loader log file discussed in Chapter 4.

Figure 5-2. Loader: six counters with descriptions

[View full size image]

Generics

Figure 5-3 shows the descriptions of counters for generics in your application. Don't be surprised if you are not
using generics (a new version 2.0 feature) and you still observe positive numbers on these counters—internally,
the runtime may use generics as a side effect of nongeneric method calls that your application makes. Also, it is
worth recalling that generic methods do not have to belong to generic types! For more information about the
generics implementation in the .NET Compact Framework, see Roman Batoukov's Weblog at
blogs.msdn.com/romanbat/archive/2005/01/06/348114.aspx.

Figure 5-3. Generics: six counters with descriptions

[View full size image]

Locks and Threads

Figure 5-4 shows descriptions of the threading counters. You learn more about threading in Chapter 11,
"Threading."

Figure 5-4. Locks and Threads: seven counters with descriptions

[View full size image]

There are two important numbers in this category. The first one is the number associated with the Threads In
Thread Pool counter. If that number is equal to or greater than the maximum number of threads the thread pool
can hold (by default 25), it could explain a delay in your application to carry out work items. Look at this number
in combination with the Work Items Queued counter to understand the ratio of jobs you are queuing compared
with the number of threads available to handle them. The counters relating to timers refer to the
System.Threading.Timer (not the System.Windows.Forms.Timer) and are relevant here because they also use
threads from the thread pool.

The other important number is the number associated with the Contested Monitor.Enter Calls counter. Every time
you explicitly use System.Threading.Monitor.Enter or implicitly use the C# lock keyword (or the Visual Basic
SyncLock), you are protecting a region from being entered concurrently by more than one thread (more on this in
Chapter 11). This has a small performance penalty of its own but can really delay processing if a thread
encounters the region when another thread is already executing there, and hence the one thread must wait.
Such cases are caught by this counter. Again, this is by design for most applications, but if the figure is not close
to what you were expecting, you may have to revisit your design. See Chapter 11 for a more in-depth
explanation.

GC

Figure 5-5 shows descriptions for the large number of garbage collector counters. If you read the section titled
"Garbage Collector" earlier in this chapter, the counters in the figure are self-explanatory. Note that the numbers
associated with the GC Latency Time, Garbage Collections (GC), GC Compactions, and Code Pitchings counters
collectively expose the GC statistics.

Figure 5-5. Garbage Collector: 18 counters with descriptions

[View full size image]

Note that a high number associated with the Boxed Value Types counter may indicate a performance issue
because boxing and unboxing are expensive operations. A common situation in which boxing occurs is when you
use types from the System.Collections namespace, and that is discussed in the section titled "Tips and Tricks"
later in this chapter.

Boxing

Value types such as int, bool, enumerations, and structures are allocated on the stack. Stack
allocation makes value types an attractive proposition from a performance perspective because they
don't have to be allocated or freed on the heap and consequently the GC is not involved. Value
types can be more expensive to pass by value in methods, but this is easily mitigated by declaring
the method signatures to accept them by reference.

Value types can also be used wherever a reference type is expected. This seamless dual usage
makes a struct a good choice from a performance perspective and does not break a basic object-
oriented principle: everything is an object. However, there is a cost: When you use a value type as
a reference type, an operation known as boxing occurs in which an actual reference type is created
(on the heap, of course, and thus it is a candidate for garbage collection) that is equivalent to the
value type. Casting back to the value type is known as unboxing. Boxing and unboxing are
expensive.

In your application, if a value type is boxed often in its lifetime, any benefits of using value types
are lost and it would be best if the type were a reference type instead. Finding the situations in
which a value type is boxed requires analysis of your code. Look for clues such as implementing an
interface from a value type, and so forth.

As a historical aside, boxing takes its name from the IL statement used to actually "convert" the
value type to a reference type: box. An extreme technique would be to dump the IL from your
assemblies and search for the box keyword to find where types are boxed.

You should also aim for a small number for the Objects Finalized counter because an object with a finalizer
remains in memory longer and also results in a performance hit because a separate thread must traverse the
finalization queue (this is explained earlier in the section titled "Garbage Collector"). Implement a finalizer only
when the object directly holds on to native resources, and even then you should implement it in combination
with a Dispose method, as detailed next.

Tip

In version 3.5 of the .NET Compact Framework, an additional Finalizer log will be
added to complement the other logs discussed in Chapter 4.

The following sample code demonstrates the disposable idiom that you should use, and it is applicable on both
the .NET Compact Framework and the full framework. Pay attention to the inline comments and the key point
following the code sample:

class NativeResourceHolder : IDisposable
{
 private bool alreadyDisposed = false;

 // This method does the cleanup.
 // Gets called only from finalizer(true) OR from Dispose(false).
 // Protected virtual so subclasses can override it.
 protected virtual void Dispose(bool calledFromFinalizer)
 {
 if (this.alreadyDisposed)
 {
 return;
 }
 this.alreadyDisposed = true;

 if (!calledFromFinalizer)
 {
 //If you hold other IDisposable references, call their Dispose method.
 //Cannot do this from finalizer; they may have already been disposed.
 }

 // Always free native resources, such as handles.
 }

 public void Dispose()
 {
 this.Dispose(false);
 // Get rid of finalizer
 // to avoid the object staying around for an extra GC cycle!
 GC.SuppressFinalize(this);
 }

 ~NativeResourceHolder()
 {
 this.Dispose(true);
 }
}

From your calling code, you should always ensure that you call the Dispose() method of the class when the
object is no longer of use. Not doing so and relying on the finalizer negatively affect performance. Implementing
a finalizer on a class is literally only for backup if the developer using the object has written bad code that forgets
to call Dispose. For more information about this, read the article titled "Implementing a Dispose Method" on the
Microsoft MSDN Web site at msdn2.microsoft.com/en-us/library/fs2xkftw.aspx.

Finally, look at the GC counters, and if the number associated with the Managed String Objects Allocated counter
is larger than what you were expecting, examine the code for potential optimization opportunities of substituting
strings with System.Text.StringBuilder—an example of how to do this and why is given in the section titled "Tips
and Tricks" later in this chapter.

Memory

Figure 5-6 shows the Memory counter names and descriptions. The two counters that your application can affect
are the JIT Heap counter, which holds the native representations of all the managed methods that were JIT
compiled, and the GC Heap counter, which holds the memory for all the managed objects allocated. The other
three heap counters can indicate the size of your application, so the principle of less code is faster code always
applies.

Figure 5-6. Memory: five counters with descriptions

[View full size image]

JIT

Figure 5-7 lists the JIT counters and descriptions. The larger the number associated with the Pitched counters,
the more penalties your application pays for the runtime to re-JIT-compile those methods the next time they are
called. If your application was not moved to the background while it was running, the numbers of pitched
methods should be zero (0). Also, note that the JIT and Memory counters must be read in combination to help
you form the complete picture of the run-time characteristics of your application.

Figure 5-7. JIT: five counters with descriptions

[View full size image]

Exceptions

Figure 5-8 shows the single counter for exceptions. As mentioned in Chapter 4, throwing exceptions is
expensive. Exceptions should be thrown only in exceptional circumstances. If this counter is high, your
application has issues not only from a performance point of view but from an overall design perspective.

Figure 5-8. Exceptions: one counter with description

[View full size image]

Interop

Figure 5-9 describes the interop counters. The numbers you see for these counters should not surprise you if you
are familiar with Platform Invocation Services (PInvoke) and using it in your code. If they do surprise you, you
should investigate. Crossing the boundary from managed code to native does have a performance implication
that is amplified when complex marshaling must take place. If you are in control of the native side or can
introduce a native intermediary, try to design chunky calls rather than chatty ones. Of course, only do this after
you identify interop as the source of a specific performance issue. Finally, combine the information you get from
the interop counters with the information in the interop log, as described in Chapter 4 and Chapter 14,
"Interoperating with the Platform."

Figure 5-9. Interop: five counters with descriptions

[View full size image]

Networking

The pair of networking counters depicted in Figure 5-10 are self-explanatory. Combine the information given by
these counters with the network log, as described in Chapter 4 and Chapter 8, "Networking."

Figure 5-10. Networking: two counters with descriptions

Windows.Forms

Figure 5-11 shows the counters and descriptions for Windows Forms objects. When you create an application
with a single form and no controls—in other words, a default project with no code—one control is created (the
form) with one brush, one font, and no other values. In your applications, if you observe high numbers for the
various Windows.Forms counters, try to reuse the objects in your forms, such as the Font and Brush objects.

Figure 5-11. Windows Forms: eight counters with descriptions

[View full size image]

Remote Performance Monitor

The file name of Remote Performance Monitor (RPM) is NetCFRPM.exe, and you can find it on your local hard
drive if you have installed Service Pack 1 (SP1) of the .NET Compact Framework.

Tip

Even if your target does not have SP1 installed, you can still use the RPM tool to
connect to it.

All the screen shots in the figures in the preceding sections of this chapter were captured by using RPM when the
.stat file was opened in it. For opening .stat files, RPM does not have to be connected to the device. You simply
copy the file from the device across to the development computer, and then browse to it locally using RPM. We
modified the previous screen shots by removing the columns with the actual numbers so that the images would
fit properly on the page.

Earlier in this chapter, we mentioned the Logging Options dialog box that is shown in Figure 4-15 in Chapter 4.
As you may recall, you can use the Logging Options dialog box to change the relevant registry entries that
control logging and the performance counters remotely. To be able to do this, RPM must be connected to the
device (described later).

Another feature of RPM is the capability of collecting performance statistics while the application is running, and
optionally to publish the counters to the Performance Monitor (PerfMon) tool on the desktop. To be able to do
this, again, RPM must connect to the device.

Connecting to the Device

To connect to the device, you must copy two files from your development computer to the Windows folder on
your device: Netcfrtl.dll and Netcflaunch.exe. Both can be found by default in the C:\Program Files\Microsoft
Visual Studio 8\SmartDevices\SDK\CompactFramework\2.0\v2.0\WindowsCE\wce400\armv4 folder. (For devices
that run Windows CE 5.0 and Windows Mobile 5.0 or later, change wce400 to wce500.) The first time you run
RPM, you may see a security prompt on the device relating to Netcfrtl.dll, and you should of course accept it. On
devices running Windows Mobile 5.0, you may further need to provision the device over Microsoft ActiveSync by
using Rapiconfig a desktop configuration tool that you can use to run provisioning Extensible Markup Language
(XML) snippets. Either way, the XML with which to provision the device is as follows:

<wap-provisioningdoc>
 - <characteristic type="Metabase">
 - <characteristic type="RAPI\Windows\netcfrtl.dll*">
 <parm name="rw-access" value="3" />
 <parm name="access-role" value="152" />
 <!-- 152 maps to "CARRIER_TPS | USER_AUTH | MANAGER"-->
 </characteristic>
 </characteristic>
</wap-provisioningdoc>

For more information about provisioning devices, including how to do it on the device with managed code by
using the Microsoft.WindowsMobile.Configuration assembly, see Chapter 17, "Developing with Windows Mobile."

Assuming the preceding XML resides in a file named Rpmprovision.xml, you can run it on the device by using the
following command:

rapiconfig rpmprovision.xml

When RPM is connected, you configure the registry using the Logging Options dialog box, which you open from
the Device menu, and more important, you can collect live counters, as described next.

Note

The RPM tool that ships with version 2.0 SP1 of the .NET Compact Framework can
connect only to a real device and not to the emulator. The next version of RPM will
rectify this issue as well as include additional enhancements.

Collecting Live Counters

On the File menu, select Live Counters to open the Live Counters dialog box. In the Device combo box, you
should see your device listed, assuming you followed the steps of the preceding section successfully. This is
depicted in Figure 5-12.

Figure 5-12. RPM Live Counters dialog box showing that the device is prepared but that RPM is

not connected to an application yet

[View full size image]

After choosing your device in the Device combo box, enter the full path to your application on the device in the
Application combo box. If your application accepts command-line arguments, enter those in the Parameters text
box. When you are done, click Connect. You should see something like the results shown in Figure 5-13.

Figure 5-13. RPM Live Counters when the application is started

[View full size image]

Unlike when you open the static .stat file, the counters are updated as the application runs. For example, if you
scroll to the top and look at the Total Program Run Time counter, you will see that it is continuously
incrementing. Live counters are great for observing differences as they occur while your application is running;
for example, click a button and observe which numbers change and by how much. If you prefer to focus on
certain counters and, for example, see them in a graph, you can use PerfMon, as described in the next section.

Using PerfMon

Run PerfMon (press Windows logo key + R) to open the management console with the performance snap-in.
Right-click in the graph area and select Add Counters. You should see the .NET Compact Framework performance
counters in the Performance Object list, as shown in Figure 5-14.

Figure 5-14. Performance Monitor: adding the .NET CF counters

We added two counters: Total Program Run Time and Managed Bytes Allocated. Clearly, you'd expect the first
counter to increment linearly and the second to start at some value and then increment depending on the
mechanics of your application. In the sample application, we have a button that allocates some strings, so
whenever that button is clicked, we expect to see a small increase in the second counter. Figure 5-15 shows the
complete graph: Both counters start at 0 before the application runs, they go up, and finally when the
application exits they both go to 0 again.

Figure 5-15. Performance Monitor: graph of Total Program Run Time, Managed Bytes Allocated

[View full size image]

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Measuring Performance Programmatically

This chapter starts by discussing the characteristics of the .NET Compact Framework runtime engine and notes
how that may affect your application performance. In particular, you know that high memory usage negatively
affects your application and that more code usually means slower code. Sometimes you may simply need to
measure how long a particular method takes and, for example, optimize performance at the micro level of a
particular algorithm.

Unfortunately, unlike the full .NET Framework, the .NET Compact Framework includes no profiling tools. This
means that you cannot get a tool to report how long each method took to execute, how many times it was called,
how long each code statement took, and so forth—all of this information is available by using tools on the
desktop only. As mentioned in Chapter 4 for unit testing, you could run your code on the desktop, assuming it is
not dependent on any device-only features and environment. Most of the time, this is not possible, but it is
always worth considering.

The only option is to measure manually how long a method takes by inserting code to that effect and
remembering to remove it when you release. Traditionally, measuring time is done by using the tick count, which
is accessible through Environment.TickCount and returns the number of milliseconds since the system started.
You can access this number before and after an operation runs, and the difference indicates how much time
elapsed. The following code sample demonstrates:

 private void SomeMethodB()

 {

 int start = Environment.TickCount;

 // some long-running task

 Thread.Sleep(2000);

 int end = Environment.TickCount;

 int millis = end - start;

 MessageBox.Show(millis.ToString());

 }

The full .NET Framework 2.0 introduces the Stopwatch class in the System.Diagnostics namespace. You can use
it to accurately measure elapsed time. Stopwatch wraps the high-resolution native timer application
programming interfaces (APIs) QueryPerformanceCounter and QueryPerformanceFrequency. If they are not
available on your platform, Stopwatch falls back to using the Environment.TickCount. Stopwatch is not
implemented in .NET Compact Framework 2.0, but you can get a Stopwatch implementation from Daniel Moth's
Weblog at www.danielmoth.com/Blog/2004/12/stopwatch.html. Note that this community implementation does
not include the fallback mechanism to calling TickCount, and version 3.5 of the .NET Compact Framework
includes a full implementation of the Stopwatch class.

An example of using Stopwatch follows in the code sample:

 private void SomeMethodA()

 {

 Stopwatch sw = new Stopwatch();

 sw.Start();

 // some long-running task

 Thread.Sleep(2000);

 sw.Stop();

 long millis = sw.ElapsedMilliseconds;

 MessageBox.Show(millis.ToString());

 }

While we're on the subject of programmatically measuring time, in some circumstances you may wish to
measure memory consumption programmatically. The following line of code retrieves the number of bytes
currently thought to be allocated by your application:

long bytesInUseByManagedObjects = GC.GetTotalMemory(false);

You can also use PInvoke on the native GlobalMemoryStatus method, which retrieves information about the
system's current usage of both physical and virtual memory, as the following code sample shows:

 private void ShowMemory()

 {

 MemoryStatus ms = new MemoryStatus();

 GlobalMemoryStatus(ms);

 string result =

 "Memory Load % = " + ms.MemoryLoad +

 "\r\nTotal Physical (KB) = " + ms.TotalPhysical / 1024 +

 "\r\nAvailable Physical (KB) = " + ms.AvailPhysical / 1024 +

 "\r\nTotal Virtual = (KB) " + ms.TotalVirtual / 1024+

 "\r\nAvailable Virtual = (KB) " + ms.AvailVirtual / 1024;

 MessageBox.Show(result);

 }

 [DllImport("coredll.dll")]

 public static extern void GlobalMemoryStatus(MemoryStatus lpBuffer);

 public class MemoryStatus

 {

 public int Length;

 public int MemoryLoad;

 public int TotalPhysical;

 public int AvailPhysical;

 public int TotalPageFile;

 public int AvailPageFile;

 public int TotalVirtual;

 public int AvailVirtual;

 public MemoryStatus()

 {

 Length = Marshal.SizeOf(this);

 }

 }

You must consider several factors when you measure code. We attempt to summarize some of them here.

Always build your project in release mode using any optimizations that your chosen language allows to be set in
the project properties window. Run the code directly on the device, not in the emulator and not through Microsoft
Visual Studio. Ensure that no other user applications are running on the device. Close any Internet and other
network connections unless they are needed by what you are measuring. The idea is to create an environment
that is repeatable between tests and one that is not adversely affected by unexpected changes from other
external factors. Never measure just once; measure the same operation multiple times and take an average.
Discard the first measurement to compensate for JIT compilation time of the code involved. Ensure that you are
logging the results either on-screen or to file, and don't make the common mistake of including the logging
mechanism in your measurements!

Finally, focus on seconds and not milliseconds. Although performing operations in less than a second is definitely
possible, generally speaking you should not rely on this. Given the by-design nondeterministic garbage collection
behavior, expecting certain tasks to take less than 1 second can lead to disappointment—so do not expect it and
do not promise it either. If your requirements do dictate deterministic subsecond measurements, consider using
native code in a solution instead.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Performance Guidance

Most developers try to find the magic bullet for writing faster code. We must reiterate: No such thing exists.
Performance is designed into an application, and micro-optimizations almost never have significant impact.
Always measure before you attempt to optimize, and always measure the optimization to see if it has had an
effect in your particular scenario. Performance guidance and several tips and tricks are included throughout this
chapter in sections discussing other important topics, so please do read the whole chapter to find them all.

For more information about generic—not device-specific—performance advice given by the patterns and practices
team, see the MSDN Web site at msdn2.microsoft.com/en-us/library/ms998530.aspx.

With that said, the section titled "Tips and Tricks" that follows summarizes the guidance offered directly by the
.NET Compact Framework team. Please do not apply this advice blindly. Many times, implementing performance
optimizations conflicts with writing extensible, maintainable code; use optimizations only when you must.

Tips and Tricks

One of the performance counters described earlier counts the number of exceptions that are thrown. Throwing
new exceptions is expensive, and you should avoid throwing exceptions unless one must be thrown. In addition,
if you are a Visual Basic developer, do not use the legacy On Error GoTo/Resume Next, which is very expensive
even when an exception is not actually thrown; instead, replace that construct with try..catch..finally constructs
to be more efficient.

Improve Start-Up Time

Loading applications with version 2.0 of the .NET Compact Framework is faster than loading them with version
1.0, and the Visual Studio 2005 designer generates more optimal form layout code. You can also write optimal
layout code whenever you are manually populating, creating, and laying out controls. Use the following two pairs
of methods wherever they are available: SuspendLayout/ResumeLayout and BeginUpdate/EndUpdate.

This tip helps you keep the user interface (UI) responsive. Another technique for creating a responsive UI is to
load any data and perform other expensive tasks in a background thread. You learn more about this in Chapter
11. You can keep the UI flicker-free when performing custom drawing by using double buffering, which is a
technique described in Chapter 12, "Graphics Programming."

Give your assemblies strong names only if they are placed in the global assembly cache (GAC), and place your
assemblies in the GAC only if you really must. (For more information about how to place an assembly in the GAC,
see Chapter 6, "Completing the Application: Packaging and Deployment".) Loading a strongly named assembly
requires the runtime to verify the assembly, which is not a cheap operation. Also, Windows Mobile does some
checks of its own on the hash of an executable when the executable is started. This means that the larger your
assembly becomes, the longer it will take to load. One trick for keeping the overall assembly size small is to
remove embedded resources and load them from the file system instead. Chapter 11 includes an example.

Strings, XML, and Data

There is no application that does not use strings. Strings are immutable objects, so if you have methods that
perform multiple concatenation and other altering operations, what your code is really doing is creating and
copying multiple string objects. Use a System.Text.StringBuilder instead. This same advice applies to the
desktop world as well, but it has dramatic effects when used with the .NET Compact Framework, as shown in the
following code examples on a device running Windows Mobile 2003 Standard Edition:

 // Takes ~ 5 minutes (i.e., 300,000 seconds)

public static void UseString()

 {

 string result = string.Empty;

 for (int i = 0; i < 10000; i++)

 {

 result += "strings are immutable " +

 "but I still use them as if they are not";

 }

 }

 // Takes ~ 0.2 seconds (i.e., ~230 milliseconds!)

 public static void UseStringBuilder()

 {

 string result = string.Empty;

 StringBuilder sb = new StringBuilder();

 for (int i = 0; i < 10000; i++)

 {

 sb.Append("strings are immutable ").Append(

 "but I still use them as if they are not");

 }

 result = sb.ToString();

 }

Like string manipulation, XML is commonly used in modern applications. XML is great because of its "toolability"
and wide applicability, but it is a verbose format. If you are loading XML documents larger than 64 KB, it is best
to use a System.Xml.XmlReader instead of the popular System.Xml.XmlDocument. Also, when you load XML
documents, use performance-tuning properties such as IgnoreWhitespace, which can produce great savings in
time. Other commonsense advice includes using short element and attribute names; try to keep the XML as
concise as possible.

For data access advice, see Chapter 3, "Using SQL Server 2005 Compact Edition and Other Data Stores." In
particular, if you are new to Microsoft SQL Server 2005 Compact Edition, learn to use
System.Data.SqlServerCe.SqlCeResultset, which was designed with efficiency in mind for applications using a
local, not remote, database. For that reason, it is a class unique to the Compact Edition of SQL Server 2005.

Math

When your application must perform complex math calculations, try to stick with 32-bit numbers because 64-bit
numbers are not eligible for enregistration, which basically means the JIT compiler must use the CPU registers to
store your variables. Floating-point math is slow on Advanced RISC Machines (ARM) devices because they do not
have a floating-point unit (FPU), so regardless of whether you use managed or native code, it will not be fast.

Having said that, with the .NET Compact Framework being used in Microsoft XNA[1] on other processors, a lot of
work must have been done to optimize the floating-point implementation of the framework, and so future
versions should improve.

[1] XNA Framework is a set of managed code libraries for game development on the PC and Microsoft Xbox 360. Its

implementation started with the .NET Compact Framework as the base, and any positive changes made on the way should be

back-ported as applicable to devices that run the .NET Compact Framework for Windows CE.

Finally, the decimal type is very slow even on the desktop framework because it does not have a direct mapping
to an IL type. You cannot expect it to be fast on the .NET Compact Framework; use the decimal type only when
absolutely necessary.

Reflection

Reflection is a complex and advanced topic to which a whole book can be dedicated. We resist the temptation to
go into too much detail and instead summarize the key points that you should revisit when you are required to
use reflection in your application.

Reflection is expensive even on the desktop. On devices, you can expect to pay a penalty of 10 to 100 times
slower code execution compared with making the calls early bound; plus, there is an increase in the overall
memory usage of the application. Reflection-avoidance techniques are the same on devices as they are on the
desktop or server.

Reflection usually refers to creating types dynamically and can sometimes be avoided by employing class
factories instead. After you create a type, you invoke members on them next, and this can sometimes be avoided
by using interfaces (for an example, see the code for this chapter on the companion Web site). Also, remember
attributes and particularly custom attributes. Attributes are not expensive until they are called, which is always
by reflection, and again, they can sometimes be avoided by using interfaces instead (for an example, see code
for this chapter on the companion Web site).

It is interesting to note that when your code makes Web service calls reflection is used. If you identify Web
service calls as a bottleneck, you may decide to invest in a custom serialization (binary) solution, although when
Web service calls create a bottleneck it is usually because of the network rather than the device-side
components. Another tip for when you use Web Services is to create a single instance of the Web service proxy
object and use it throughout the application instead of re-creating it each time.

Collections

Collections in one form or another are used very commonly in applications. A common boxing scenario occurs
when you use collections such as ArrayList to store value types such as int. Such is the perfect scenario for using
generics and particularly the collections from the System.Collections.Generic namespace such as List<T>.
Generic collections have the added advantage of strong typing and hence can reduce run-time exceptions by
employing compile-time checking.

public static void UseArrayList()

{

 ArrayList a1 = new ArrayList(100000);

 ArrayList a2 = new ArrayList(100000);

 for (int i = 0; i < 100000; i++)

 {

 a2.Add(i * i); // boxing

 }

 for (int i = 0; i < 100000; i++)

 {

 int j = (int)a2[i]; //unboxing

 a1.Add(j); //boxing

 }

 // takes ~ 600 milliseconds

}

public static void UseGenerics()

{

 List<int> a1 = new List<int>(100000);

 List<int> a2 = new List<int>(100000);

 for (int i = 0; i < 100000; i++)

 {

 a2.Add(i * i);

 }

 for (int i = 0; i < 100000; i++)

 {

 int j = a2[i];

 a1.Add(j);

 }

 // takes ~ 75 milliseconds

}

In the preceding code, the method using generics is faster. However, comparing the generics case to a scenario
in which an array is used directly shows that the array is still faster. This is no surprise because the array is what
all other collection types wrap. It is left as an exercise for you to run the two preceding methods and the method
that follows and to compare them to identify exactly how much they vary. Use Stopwatch, and also be sure to
look at the performance counters for each case.

public static void UseArray()

{

 int[] a1 = new int[100000];

 int[] a2 = new int[100000];

 for (int i = 0; i < 100000; i++)

 {

 a2[i] = i * i;

 }

 for (int i = 0; i < 100000; i++)

 {

 int j = a2[i];

 a1[i] = j;

 }

 // takes ~ 30 milliseconds

}

Of course, different access characteristics vary, so always test your particular scenario. Once again, trading
performance for elegant code should take place only when it must.

Other advice for using collections includes using a standard for loop instead of foreach because the latter uses
reflection. Always presize your collections by using the constructor that accepts a capacity; otherwise, when you
reach the capacity internally, a new, larger buffer must be allocated and all the existing items copied to it. You
should get the size of the buffer right the first time.

Overriding System.Object Methods

Reflection is costly. Sometimes reflection can occur under the covers and not directly in your code. Consider the
Object.ToString() method: Every object supports it, yet if you do not override this method in your code, when it
is called, the base implementation will run. This is a case of a virtual call, but the performance cost of the virtual
call is small compared with the performance cost of the default ToString implementation that uses reflection.

Make a point of overriding the ToString method in your own classes if it is going to be called.

Similarly, for value types, make sure you override the Equals and GetHashCode methods. These methods create
serious performance bottlenecks; improvements are there to be gained for your value types. These methods are
virtual, use reflection, and also result in boxing because your value type must be boxed for the methods to be
called. Overriding these two methods in your value type (that is, your struct) will eliminate boxing, the virtual
call, and also the reflection if you can implement the methods in a way that does not use reflection.

Parting Thoughts

Please do not take all of the advice given in this chapter and start applying it blindly to your code. First, measure
to see whether a performance issue exists. If so, evaluate the best way to optimize the code causing the issue,
and only then see whether you can use one of the tips and tricks we give here. After you apply the change,
measure performance again to see whether the optimization had an effect, which is the criterion for keeping the
change. Some of the advice given here is in direct opposition to good design principles, that should be sacrificed
for performance only when it is absolutely necessary to do so.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

Performance optimization principles are generally the same across platforms. .NET performance advice on the
desktop also applies in the device world. This chapter highlights some of the generic performance-optimizing
advice and focuses on summarizing the techniques you can apply to resource-constrained devices.
Understanding the compact CLR is paramount for writing efficient code. This chapter describes how to use the
performance counters and Remote Performance Monitor. Also, the code samples in this chapter can help you
measure memory consumption or the speed of an operation programmatically.

Good performance should be a requirement in your projects, one with the same importance as functional
requirements. This chapter gives you the tools and information you need to optimize your code and write
applications that are good citizens of the mobile platform: They are always responsive, they get the job done
fast, and they do not consume resources that other applications could be using.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 6. Completing the Application: Packaging and

Deployment

In this chapter:

Implementing Help 219

Locking Down Your Application 225

Deploying the Runtime 228

Building a Device Installer 229

Security Policies and Code Signing 231

The Global Assembly Cache 234

Building a Desktop Installer 238

In this chapter, we discuss the often overlooked tasks involved in packaging and deploying your completed code
to your target devices. First, we talk about how to add online help content to your application, and then we
describe some techniques you can use to lock down devices to your specific applications. Finally, we discuss the
steps involved in producing a simple installer package that you can use to deploy your application and content
files to smart devices.

Implementing Help

Implementing help content for an application is an important step in application development that is often left
till late in the development process. Although it is beyond the scope of this book to describe the techniques
involved in writing good help content, we must mention that it is important to keep the help content concise and
arranged into short topics to minimize the need for scrolling. You have only limited screen space (see Figure
6-1), which is not ideal for reading large amounts of text, and the search and navigation functionalities on
devices are limited in comparison with desktop versions of the Microsoft Windows operating system.

Figure 6-1. The Pocket PC Help application

Creating HTML-Based Help

Since the first version of Windows CE, the platform has supported a Hypertext Markup Language (HTML)–based
help engine. Pocket PC continues to use the same technology. Smartphone does not have a help engine, so we
discuss smartphones separately later in the chapter. Unlike on the desktop, help is accessed on the Start menu
only. Users can open a specific help topic by tapping Help on the Start menu when your form is visible; if you
don't provide an implementation for this feature, the full help contents on the system are displayed. The device
help engine is far simpler than HTML Help on the desktop, and Microsoft does not ship any tools to build this
content. However, because the help format is an extension of standard HTML, with a few additional tags you can
create help content using any regular Web authoring software. The engine supports all the same tags as
Microsoft Internet Explorer Mobile (known as Pocket Internet Explorer in earlier versions of the platform).

Each help file is a single .htm file that can contain multiple help topics. Standard HTML anchors are used to
provide links between topics in the file. One anchor must be included in the file to indicate the location of the
table of contents—the help engine uses this anchor to provide a permanent link to the contents as follows:

The table of contents itself is simply created as a list of hyperlinks to the different topics contained in the
document. A special tag is placed in the page header to tell the help application which topic represents the table
of contents. This tag must match the anchor name of your table of contents page exactly; otherwise, the help
application will display an error indicating that the help file cannot be found.

<meta http-equiv="Htm-Help" content="kiosk.htm#Main_Contents"/>

In the HTML file, each individual page is separated by a special comment tag. The name of the comment tag
harkens back to the code name for Windows CE 1.0, which was Pegasus; hence, PegHelp:

<!-- PegHelp --><hr/>

This comment tag is used so that the document is still valid HTML and will display in any browser; it indicates to
the Help application in Windows CE where each topic begins and ends to preserve the illusion that each topic is
on a separate page. The horizontal rule tag is optional but makes working with the file from the desktop much
easier.

The help file can contain keyword definitions that the built-in search application can use to find topics in your
help file. These keyword definitions are specified in the <HEAD> section of your help file and take the following
form:

<keyword value="kiosk;screen"
title="Kiosk Settings"
href="Kiosk.htm#kiosk" />

The value attribute is a semicolon-separated list of keywords. In the preceding example, we associate the
keywords kiosk and screen with the topic. The title attribute stores a description of the specific topic that can be
displayed to the user. Finally, the href contains the link to the help topic. Notice the number sign (#) is used to
denote a named anchor in the document. The help engine cannot cope with relative paths, so it is customary to
place your .htm file in the Windows folder on the device. Figure 6-2 shows the results of a search for the keyword
we detailed in the sample help file.

Figure 6-2. Searching the help system for the keyword kiosk, which is defined in the help file

There is little else to know about writing help content for Windows CE. A wide range of HTML tags is supported,
as you would expect from Internet Explorer Mobile. One surprising limitation is that you can use only bitmap
images, and these must be specified with absolute paths in the tag. Realistically, this means the help file
and associated images are usually deployed to the Windows folder on the target device. The following listing
shows a completed help file.

<html>
<head>
 <title>Kiosk Sample</title>
 <LINK rel="stylesheet" type="text/css" href="file://\Windows\DeviceHelp.css" />
 <meta http-equiv="Htm-Help" content="kiosk.htm#Main_Contents"/>
 <keyword title="Kiosk Mode" value="Kiosk;Fullscreen" href="kiosk.htm#kiosk"/>
 <keyword title="Hardware Buttons" value="Hardware;Button"
href="kiosk.htm#buttons"/>
 <keyword title="Help Links" value="Help;Context" href="kiosk.htm#help"/>
</head>
<body><!-- PegHelp -->

<h1>Table of Contents</h1>

<p>Kiosk Mode</p>
<p>Hardware Buttons</p>
<p>Help Links</p>

<!-- PegHelp --><hr/>

<h1 class="dtH1">Kiosk Mode</h1>
<p>SHFullScreen is used to enable/disable various user interface features such as the
start menu.</p>

Hide StartMenu will disallow the user from tapping Start or any of the
notification tray icons.

Hide Taskbar will remove the entire taskbar. This only works if the Form has
WindowState = Maximized
Hide SIP will hide the Soft Input Panel button. On Windows Mobile 5.0, this will
reappear if you tap on the menu bar.
Hide Control Box changes the property to hide the OK button used to close the
form.

<h4 class="dtH4">See also</h4>
<p>Hardware Buttons</p>
<p>Help</p>

<!-- PegHelp --><hr/>

<h1 class="dtH1">Hardware Buttons</h1>
<p>Six Hardware Button controls are used to override their default behavior so that

the user cannot easily "escape" from our application.</p>
<h4 class="dtH4">See also</h4>

<p>Kiosk Mode</p>
<p>Help Links</p>

<!-- PegHelp --><hr/>

<h1 class="dtH1">Help</h1>
<p>The sample implements help links from both the Start menu and through a main
application menu (so that it is accessible even in Kiosk mode).</p>
<p>The System.Windows.Forms.Help class is used to start the help system (Not supported
on Smartphone).</p>

<h4 class="dtH4">See also</h4>

<p>Kiosk Mode</p>
<p>Hardware Buttons</p>
<!-- PegHelp --><hr/>
</body>
</html>

After you create a working multiple-topic help file, you can hook up the Help menu item to display the Help
topics to the user.

Starting Help Topics from Code

The Microsoft .NET Compact Framework version 2.0 introduces a subset of the desktop
System.Windows.Forms.Help class used to interact with the help engine. With the ShowHelp method, you can
specify the file name and optionally the topic name to display. The topic name is appended as a standard HTML
anchor, for example:

Help.ShowHelp(this, "MyApp.htm#MyTopic");

Typically, you would call this from your HelpRequested event handler for your form, but you could provide
additional help links in your application:

private void Form1_HelpRequested(object sender, HelpEventArgs hlpevent)
{
Help.ShowHelp(this, "Kiosk.htm#Main_Contents");
}

If you want to add more flexibility, you can store the topic name in a string variable that you can set based on
activity in the application to provide context sensitivity.

Master Table of Contents

There is one final step available that you can use to hook the help content into the master table of contents on
the device—this master table of contents is the list displayed when a user taps Start and then taps Help when no
application is in use. You hook the Help content to the master table of contents by placing a shortcut to the help
file in the Windows\Help folder on the device. In Windows Mobile 5.0 and later, the help engine reads the title
from your file and appends it to the "Help for Added Programs" topic that appears at the bottom of the main
table of contents (see Figure 6-3). In earlier versions, custom Help files are added alphabetically to the table of
contents.

Figure 6-3. Custom Help link in the master table of contents

You can create these shortcuts in the device installer, as described in the section titled "Adding Shortcuts" later
in this chapter. You can also create the shortcuts manually if necessary. In Windows CE, a shortcut is a file with
an .lnk extension with contents such as follows:

18#\Windows\Kiosk.htm

The numeral represents the number of characters after the number sign (#), which is followed by the full path to
the file. If you create this file manually, you must calculate the length yourself. If a path contains spaces, it must
be enclosed in double quotation marks, and these are included in the character count. You can call an application
programming interface (API) to create shortcuts programmatically: SHCreateShortcut. The techniques involved
in calling API methods are discussed in Chapter 14, "Interoperating with the Platform."

Help on Smartphone Devices

If you need to distribute help content on smartphone devices, the easiest method is to write Help as simple
HTML content. The content is probably best divided into separate .htm files for each topic along with a table of
contents page. Although you can potentially use the same .htm file as the one you created for Pocket PC, it will
be shown in its entirety and is not conveniently split into topics.

To start a help topic in your application, you can use the Process class in the System.Diagnostics namespace to
start the .htm file. The following ShowTopic method is designed to behave much like the
System.Windows.Forms.Help.ShowTopic method, which is not available on smartphones. You should pass in the
full path of an HTML file containing your help content.

public static void ShowTopic(string url)
{
Process.Start(url, "");
}

The preceding code opens the topic in an Internet Explorer Mobile window. The user can navigate back to your
application by pressing the Back hardware key. If you need to provide online help for a smartphone application,
you should keep the help content as concise as possible and perhaps consider directing users to a manual that
they can read on their desktop computer or on the Web.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Locking Down Your Application

When you deploy an enterprise application, often you want to restrict user access to only your application and
not any other applications or settings. You can achieve this by using a combination of device configuration and
changes to your application to avoid control passing away from your forms. Because the way devices are
configured varies between manufacturers, the options available to you for device configuration vary depending on
the device you deploy to.

Kiosk Mode

Essentially, Windows Mobile is designed as a consumer platform rather than as an industrial platform, and
therefore the user interface is designed to provide easy access to built-in applications. Users can use many
routes to access system features, many of which are outside your control, such as notification bubbles that can
open above your application.

You have two options for writing a kiosk mode application. The first is new in .NET Compact Framework 2.0 and
involves setting the Form.WindowState property to Maximized. This hides the entire taskbar and makes your
form fill the entire screen space (if you remove the default MenuBar from your form, you'll have full screen real
estate). Use this option with care because you will lose the ability to switch to other applications if necessary or
view the notification area, including the clock.

The second option retains the basic shell components but disables the Start menu and restricts the user from
tapping notification area icons, although these can still be used to display status. You can use the SHFullScreen
API function, to which you can pass flags, to disable the Start menu and software-based input panel (SIP)
buttons. Figure 6-4 shows a side-by-side comparison of an application with the SHFullScreen options and a
maximized form. The .NET Compact Framework does not include a managed API for calling SHFullScreen, so you
have to write the Platform Invocation Services (PInvoke) declaration yourself.

Figure 6-4. Comparison of a regular Windows Mobile application (left), when using SHFullScreen

(middle) and when displaying with the form maximized (right)

[View full size image]

[DllImport("aygshell.dll", SetLastError=true)]

[return: MarshalAs(UnmanagedType.Bool)]

private static extern bool SHFullScreen(IntPtr hwndRequester,

SHFS dwState);

[Flags()]

internal enum SHFS

{

SHOWTASKBAR = 0x0001,

HIDETASKBAR = 0x0002,

SHOWSIPBUTTON = 0x0004,

HIDESIPBUTTON = 0x0008,

SHOWSTARTICON = 0x0010,

HIDESTARTICON = 0x0020,

}

Hardware Buttons

.NET Compact Framework 2.0 includes support for reacting to application buttons on devices. If you register the
hardware buttons to your application, you can ensure that the user can't use the buttons to switch to another
application. There is no standard for which devices support which application buttons, and the order the buttons
appear on the device may not match the numerical value of the button.

To use the HardwareButton component, you can drag it onto your form in the designer. Each HardwareButton
component can capture only a single hardware button, and so you will probably need to add several
HardwareButton controls to your form. Then you must set the AssociatedControl property (use your form) and
the HardwareKey, and the control will pass through key presses to your form as KeyDown events. If you want to
capture only the hardware buttons to restrict them from performing other functions, you don't need to write the
event handler for KeyDown. Unlike a regular key press, the HardwareButton component doesn't raise an
equivalent KeyUp event.

private void Form1_KeyDown(object sender, KeyEventArgs e)

{

 switch ((HardwareKeys)e.KeyCode)

 {

 case HardwareKeys.ApplicationKey1:

 MessageBox.Show("Hardware Key 1");

 break;

 case HardwareKeys.ApplicationKey2:

 MessageBox.Show("Hardware Key 2");

 break;

 case HardwareKeys.ApplicationKey3:

 MessageBox.Show("Hardware Key 3");

 break;

 case HardwareKeys.ApplicationKey4:

 MessageBox.Show("Hardware Key 4");

 break;

 case HardwareKeys.ApplicationKey5:

 MessageBox.Show("Hardware Key 5");

 break;

 case HardwareKeys.ApplicationKey6:

 MessageBox.Show("Hardware Key 6");

 break;

 }

}

Locking Down the User Interface

A simple, but not entirely bulletproof, method of disabling access to other applications is to remove the
application shortcuts from the Programs folder on the device. You can, therefore, remove the shortcut to File
Explorer to prevent the user from browsing to the application file. You can't delete or rename files already on the
device from a setup project. The only workaround is to overwrite them with a zero-byte file, which effectively
hides them. Files can be removed from a custom setup .dll file, or even from in your application code; we
demonstrate these techniques in the section titled "Native CESetup.dll" later in this chapter.

Third-Party Solutions

For more detailed control in locking down your devices, you can use a number of third-party tools designed to
enforce kiosk mode on Windows Mobile–powered devices. Symbol, for example, provides the AppCenter tool you
can use to lock down devices to a single application. SPB Software House has a product that works on any Pocket
PC that can provide access to multiple trusted applications and can be administered by password entry. More
details are available at www.spbsoftwarehouse.com/products/kioskengine/?en.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Deploying the Runtime

All devices that run Windows Mobile 2003 or Windows Mobile 5.0 have at least .NET Compact Framework 1.0 in
read-only memory (ROM). Devices running Windows Mobil 6 have version 2.0 of the Compact Framework in ROM.
Microsoft ships releases of the platform to device manufacturers, who then customize and release to their devices
on their own schedule. This can mean that different devices are running different versions of the framework as
service pack updates are introduced with the Adaption Kit Update (AKU) releases that Microsoft ships to device
manufacturers.

Because framework releases introduce performance improvements and bug fixes, it is preferable to ensure you
are running on the latest available version. On current devices, .NET Compact Framework 2.0 is not built in as
standard, but device manufacturers may choose to include it. Ensure that version 2.0 is installed so that your
application runs properly; otherwise, if the version 2.0 runtime is not present, running a .NET Compact
Framework 2.0 application will result in the error shown in Figure 6-5.

Figure 6-5. Error message displayed when attempting to run a .NET Compact Framework 2.0

application on a device without the version 2.0 runtime

At the time of this writing, .NET Compact Framework 2.0 Service Pack 2 is the latest release; for optimal
performance and reliability, ensure that the latest version of the runtime is installed. Microsoft has released a
package containing all the redistributable components for Service Pack 2 version. To download, go to the
Microsoft Download Center Web site at www.microsoft.com/downloads/details.aspx?familyid=aea55f2f-
07b5-4a8c-8a44-b4e1b196d5c0&DisplayLang=en.

The Compact Framework runtime is shipped by Microsoft as a collection of .cab file installers, each for a different
version of Windows CE and Windows Mobile and different central processing unit (CPU) architectures (see Table
6-1). Microsoft bundles each of the separate .cab file installers together into the .NET Compact Framework
Redistributable package. The Redistributable package starts the relevant .cab file installer through Microsoft
ActiveSync and deploys the correct version of the runtime onto whichever device is currently connected. By
directing your users to use this approach, you remove the need to ship the runtimes with your desktop installer
and ensure that your users can always install the latest version without you having to repackage your
application.

You may, however, wish to automate this step and push the correct .cab file to the device prior to installing your
application. In the next section, we work through an example of this.

Table 6-1. .NET Compact Framework 2.0 .cab Files

File Name Platform

NETCFv2.ppc.armv4.cab Pocket PC 2003

NETCFv2.wce4.[CPU].cab Windows CE .NET 4.2

NETCFv2.wm.armv4i.cab Windows Mobile 5.0

NETCFv2.wce5.[CPU].cab Windows CE 5.0

If you quickly want to determine the available runtime version from the device, you can open the Cgacutil.exe
application, which is in the Windows folder. This application displays a window that lists the installed framework
versions shown in Figure 6-6.

Figure 6-6. Cgacutil tool showing installed framework versions

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Building a Device Installer

Windows CE supports a common installer type based on the Microsoft Cabinet format; packages have the .cab
extension. These .cab files contain the application files and an installation script that specifies where to install
the files and which shortcuts and registry settings to apply.

Visual Studio Installer Tools

Visual Studio 2005 introduces a project template specifically for building a .cab file installer directly from the
integrated development environment (IDE). Previously, you could generate the .cab file installer only once, and
then you had to manually alter an .inf file to regenerate the .cab file with any changed settings. The new
approach, although not perfect, brings the experience closer to that of building an installer for a desktop project.

Device Installer Project Type

To create a new device installer, on the File menu, select New Project. Navigate to Other Project Types, Setup
And Deployment, Smart Device CAB Project. With the project selected in the Solution Explorer tree, you can set a
number of project-wide options. For example, Manufacturer and ProductName are used in combination as the
display name for the component in the Remove Programs list in Settings. For this reason, it is recommended that
the total length of the combined string be not longer than approximately 36 characters because the string will be
truncated on most devices that use a portrait screen orientation. In the unlikely event that you don't want to
allow the user to remove your product, you can exclude your application from the Remove Programs list by
setting the NoUninstall property to True.

Adding Files and Setting Targets

Files are installed by pasting them into the File System Editor (Figure 6-7) in your setup project. You can use a
variety of standard folder constants that deploy their contents to the correct localized folder on the target device.
You can also create new folders and subfolders.

Figure 6-7. File System Editor, which you can use to drag program files to where they will be

deployed to the file system on the target device

[View full size image]

As the result of an issue with devices that run Windows Mobile 2003 and earlier, you may find that deploying
files to a subfolder of Windows results in the files being placed directly in the Windows folder. The only
workaround here is to manually create a directory called Windows and place your subfolder in there—do not use
the Windows Folder system folder in the File System Editor.

Adding Shortcuts

Shortcuts are just files, and as such are also added by using the File System Editor. To create a shortcut to a file
in a project, right-click the file, and select Create Shortcut. You can then rename the shortcut to assign it the
required display name, and you can place it in a folder, for example, the Programs Folder, if you want it to show
on the Start menu Programs list.

Writing Registry Settings

As with setup projects for desktop Windows, built-in support is provided for provisioning registry settings in a
device deployment project. Select the Registry Editor to see a tree prepopulated with root keys, as shown in

Figure 6-8. You can add your own keys beneath the prepopulated values as required. They will be created if they
are not already present on the target device.

Figure 6-8. Registry Editor, which you can use to deploy specific keys and values for your

application

[View full size image]

Compression

Certain devices that run Windows Mobile, such as all smartphone devices and all devices running Windows Mobile
5.0 and later, support compressed .cab files. Although devices running Windows Mobile 5.0 Pocket PC still
support uncompressed .cab files, using uncompressed files is not recommended. You can activate compression in
the project properties window with your .cab file project selected. You may want to build the project twice—one
version with compression enabled and one version with compression disabled—so that it supports all device
types. Unfortunately, Visual Studio does not include a method to do this automatically for you.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Security Policies and Code Signing

Code signing was originally introduced in the Smartphone platform to address mobile operator concerns about
malicious software affecting the security of their mobile networks. With Windows Mobile 5.0, the security model
is extended to Pocket PC also. Smartphones support a one- or two-tier security model; Pocket PCs support only
the one-tier model. Table 6-2 shows the differences between security tiers.

Table 6-2. Windows Mobile 5.0 Security Configurations

Authentication Level
Two-Tier Security (Most
Smartphones)

One-Tier Security (Pocket
PCs)

Signed with a Privileged
Certificate

Application may access
privileged and normal APIs
and registry keys

Application may access
privileged and normal APIs
and registry keys

Signed with an Unprivileged
Certificate

Application may not access
privileged APIs and certain
registry locations

Application may access
privileged and normal APIs
and registry keys

Unsigned Application may be
prevented from running

Application may be
prevented from running

The default behavior on most devices is to prompt the user the first time an unsigned application is run. The user
can then choose to trust the application, and if so, the user will not be prompted when running the application
again. When you develop for smartphones, you need to know which APIs are considered privileged; these APIs
are documented on the Microsoft MSDN Web site at http://msdn2.microsoft.com/en-us/library/aa455835.aspx.
On some devices, privileged certificates are available only from the network operator for which the device is built.
In many cases, privileged certificates can be obtained through the Mobile2Market signing program. See the
upcoming section titled "Design Guidelines and Mobile2Market" for more information.

Microsoft has released a Security Configuration Manager Powertoy (Figure 6-9) that you can use to query and
provision security policies on a connected device. In a future release of Visual Studio, this functionality will be
built in.

Figure 6-9. Security Configuration Manager Powertoy, which provides easy access to change the

security policy on the device

[View full size image]

You can quickly switch the device between various security modes, including turning security off, which allows
any application to run without prompts. You can download Security Configuration Manager from the Microsoft
Download Center at www.microsoft.com/downloads/details.aspx?familyid=7E92628C-D587-47E0-908B-
09FEE6EA517A&displaylang=en. The next version of Visual Studio, currently code-named "Orcas," will include
this functionality as standard.

Signing Your Code

Signing your application requires you to have an account with one of the code-signing bodies, such as VeriSign.
The costs involved depend on the volume of signing events for which you apply. A signing event represents a
single application file (.dll, .exe, or .cab) that is to be signed. If your application uses a large number of separate
files, the cost of code signing can be significant.

When you have established an account with a signing authority, you are issued a personal key with which you
must sign all of your application files. After you've built and signed your files, you upload them to the provider.
The provider checks all of the files and replaces the signatures with your official signatures, which are derived
from the Mobile2Market base key. Only when they contain these final signatures will your files be correctly
recognized by the security system on the device and the application will be allowed to run without prompting.

Design Guidelines and Mobile2Market

Similar to the logo program for desktop versions of the Microsoft Windows operating system, Microsoft has a
scheme to achieve a "Designed for Windows Mobile" logo. The guidelines for this were last updated in May 2004,
and although they were written for a previous generation of the platform, they still apply to applications you
write today.

Because of limitations in version 1.0 of the .NET Compact Framework, certain requirements were relaxed for
managed code developers, such as the ability to provide an exit option and support for the platform's Help menu.
You can decide whether to include an exit option in your application. The decision will depend on the usage
patterns of the device and your target audience. In version 2.0 of the Compact Framework, you can support Help
by handling the HelpRequested event of your form, as discussed earlier in this chapter. The advantages of using
this built-in mechanism are consistency with other applications and less need to clutter your menus or toolbars
with Help buttons.

Mobile2Market is a program that provides a stamp of approval on applications written to conform to a set of
Designed for Windows Mobile guidelines, as mentioned at the beginning of Chapter 2, "Building a Microsoft
Windows Forms GUI." These guidelines ensure that the application respects user interface standards, behaves
well when run alongside other applications, and correctly allows for localization.

There is a cost involved in submitting your application for Mobile2Market testing. The program is designed to be
used for consumer-focused applications; enterprise applications are not usually expected to go through the
approval process because they are generally distributed internally only. You can find more information about
Mobile2Market at www.mobile2market.com.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

The Global Assembly Cache

The global assembly cache (GAC) provides a central repository for .NET .dll files that are shared across multiple
applications. To support installation in the GAC, an assembly must be signed with a key pair to give it a strong
name. Signing assemblies with a key pair ensures that if two assemblies with the same name are installed in the
GAC, because they are different versions or were signed with different keys they will be treated as different
assemblies.

Strong Naming Your Assemblies

Strong naming an assembly not only provides this unique versioning, it also provides authentication because to
produce an assembly with a matching signature you must sign the assembly with the same key pair. To assign a
strong name to your assembly, you need a key pair file. Generally, you create only one key pair file, and then you
can use it with any managed assemblies you want to strong name. The same mechanism for strong naming is
used for desktop and device .NET assemblies. Open the project properties window for the assembly project, and
on the Signing tab select the Sign The Assembly option, as shown in Figure 6-10. If you don't have a key file (a
file that uses the .snk extension), you can generate one by selecting New from the list of keys in the Choose A
Strong Name Key File list.

Figure 6-10. Project signing options showing selection of a key pair file

[View full size image]

When and How to Use the Global Assembly Cache

Installing in the GAC is not always the right option for a .dll file. By installing your .dll files locally with your
application, you ensure that your application will not be broken if a patched .dll file is installed on the system as
part of another application. However, you can install common .dll files in the GAC to reduce the installation
footprint. All of the framework base class libraries and Microsoft SQL Server assemblies are installed in the GAC.

Assemblies are added to the GAC by a text file placed in the Windows directory. This file simply contains a list of
paths to .NET Compact Framework assemblies to be added to the GAC. When a .NET Compact Framework
application is started, the system scans for new .gac files, and if any are present, it imports the .dll files
specified. If a .gac file is removed, the .dll files that were registered in it are removed from the GAC.

Adding your assembly to the GAC through a device .cab file project is very easy. In the File System Editor,
right-click File System On Target Machine, and select Add Special Folder. Then choose Global Assembly Cache

Folder, which is at the bottom of the menu. Drag the managed .dll files into this folder to generate automatically
the .gac files necessary to register them. If your assemblies do not have a strong name, you will receive a build
error. The only caveat to using this method of installing in the GAC is that the file is not moved until the next
time the .NET Compact Framework runtime is started. However, you can make this happen immediately by
calling Cgacutil.exe with the /refresh flag, as we demonstrate in the example CESetup.dll in the upcoming
section titled "Native CESetup.dll."

On devices that run versions earlier than Windows Mobile 5.0, this technique doesn't work because the generated
.gac file is Unicode encoded and older devices fail to recognize this correctly. In such scenarios, the solution is to
hand-code the .gac file in Notepad, which saves the file in American Standard Code for Information Interchange
(ASCII) by default. Place this file in the Windows Folder special folder in your .cab file project, along with the
project output from the .dll file you want to add to the GAC. The .gac text file simply contains the path to the .dll
files to add, one per line. In our example (shown later), it contains the following:

%CE2%\KioskLibrary.dll

Native CESetup.dll

The cab installer engine in Windows CE supports a mechanism for adding custom actions during the install
process. For example, you may want to add a custom action to perform additional checks to see whether
prerequisite components are present on the device or to make changes that cannot be made directly from a .cab
file package, such as deleting files to lock down the device as described earlier in this chapter. You can create
custom actions by creating a single native code (C++) .dll file for your .cab file project. This .dll file must expose
four specific methods that are called at the beginning and end of the install and uninstall processes. You can
create the required .dll file as a Smart Device Microsoft Win32 project.

Next, you must perform a couple of additional steps. In the main .cpp file for the project, add the following:

#include "ce_setup.h"

You can then define the four setup methods that are called by the installer engine:

codeINSTALL_INIT
Install_Init(
 HWND hwndParent,
 BOOL fFirstCall,
 BOOL fPreviouslyInstalled,
 LPCTSTR pszInstallDir
)
{
return codeINSTALL_INIT_CONTINUE;
}

codeINSTALL_EXIT
Install_Exit(
 HWND hwndParent,
 LPCTSTR pszInstallDir,
 WORD cFailedDirs,
 WORD cFailedFiles,
 WORD cFailedRegKeys,
 WORD cFailedRegVals,
 WORD cFailedShortcuts
)
{
//Hide games and File Explorer.
CreateDirectory(_T("\\Windows\\Start Menu Backup"), NULL);
CreateDirectory(_T("\\Windows\\Start Menu Backup\\Programs"), NULL);
MoveFile(_T("\\Windows\\Start Menu\\Programs\\File Explorer.lnk"),
_T("\\Windows\\Start Menu Backup\\Programs\\File Explorer.lnk"));
MoveFile(_T("\\Windows\\Start Menu\\Programs\\Games"), _T("\\Windows\\Start Menu
Backup\\Programs\\Games"));

//Force a refresh of the GAC.
CreateProcess(_T("cgacutil.exe"),_T("/
refresh"),NULL,NULL,FALSE,0,NULL,NULL,NULL,NULL);
return codeINSTALL_EXIT_DONE;
}

codeUNINSTALL_INIT
Uninstall_Init(
 HWND hwndParent,
 LPCTSTR pszInstallDir)
{
return codeUNINSTALL_INIT_CONTINUE;

}

codeUNINSTALL_EXIT
Uninstall_Exit(
 HWND hwndParent)
{
//Restore games and File Explorer.
MoveFile(_T("\\Windows\\Start Menu Backup\\Programs\\File Explorer.lnk"),
_T("\\Windows\\Start Menu\\Programs\\File Explorer.lnk"));
MoveFile(_T("\\Windows\\Start Menu Backup\\Programs\\Games"), _T("\\Windows\\Start
Menu\\Programs\\Games"));

//Refresh GAC.
CreateProcess(_T("cgacutil.exe"),_T("/
refresh"),NULL,NULL,FALSE,0,NULL,NULL,NULL,NULL);
return codeUNINSTALL_EXIT_DONE;
}

Finally, so that these entry points are exported, add a new module-definition file to the project, and name it
native.def. Place the following contents in it:

EXPORTS

Install_Init
Install_Exit
Uninstall_Init
Uninstall_Exit

If you want to test the .dll file and see when it is called, add a message box to each of the methods.

To have this .dll file called as part of the setup process, add the primary output to your Application Folder in your
device .cab file project (see Figure 6-11). In the main properties of the .cab file project, you can designate this
.dll file as the Windows CE Setup .dll file.

Figure 6-11. The project output of the CESetupDLL project that was previously added to the

installer project

[View full size image]

What you have done in this setup .dll file is to move a couple of key application shortcuts to make it difficult for
the user to try to start the games or File Explorer applications on the device. You also force a refresh of the GAC
so that the .dll file is registered immediately (rather than waiting until the next .NET Compact Framework
application is started).

Testing Your .cab File

Your .cab file now contains everything necessary to install your application on the device. You can use ActiveSync
(or Windows Mobile Device Center in the Windows Vista operating system) to explore the file system on the
device and copy the .cab file to it. Then, from the device, you can locate and start the .cab file from the File
Explorer to install your application. After you have successfully installed and run your application, the next step
is to build a desktop installer.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Building a Desktop Installer

The preceding section describes how to create a device .cab installer that you can use to deploy the file to
devices manually and install the product. Many device users have ActiveSync set up on their desktop computer,
and this can be used to automate the installation process. In this section, we create a sample installation project
to provide a package that can be run on a desktop computer and that will deploy and install the .cab file using
ActiveSync. On the File menu, select New Project, and then select Other Project Types, Setup And Deployment,
and Setup Project.

Adding Your .cab Project

You can add the output from another project in your solution to your Application Folder. We do this in this
example to add in the .cab file created in the preceding section. Select Add, select Project Output, and then
ensure your device .cab file project is selected, as shown in Figure 6-12.

Figure 6-12. Adding project output from the device installer project

Adding Other Application Files

In the same way that you added the .cab file, you can add other files associated with your application that will be
installed on the desktop computer, such as help files or a companion application.

Automating the Device-Side Installation

You can install an application to the Add/Remove Programs in ActiveSync or the Windows Mobile Device Center in
Windows Vista by passing it a correctly formed .ini file that describes your application and the .cab file or files to
install. Although Add/Remove Programs allows multiple .cab files to be listed, this capability is to be used for

supporting the same component with versions for different CPUs or platforms; you can't use this method to
deploy multiple distinct .cab files. If your .cab file project is created for Windows Mobile, only the Advanced RISC
Machines (ARM) architecture is supported, so you won't have to deal with multiple .cab files.

The .ini file consists of a CeAppManager section that specifies attributes to describe the AppManager version
(only 1.0 is valid) and the name of your component. This is followed by a section named exactly the same as the
Component attribute in the first section that describes that component. This section contains a longer textual
description of the package, optionally the name of the device-side package to use when uninstalling, and finally
the comma-separated list of .cab files that make up the package.

[CEAppManager]

Version = 1.0

Component = Chapter6

[Chapter6]

Description = Chapter Six Example

Uninstall = Chapter6

;Because there are multiple .cab files specific to a CPU type,

;these files are relative to the installation directory.

CabFiles = Chapter6Cab.cab

The Setup project types in VS2005 do not include the capability to automatically

install the device side component; therefore, we need to add a custom action to pass

this INI file to CeAppMgr.

Adding a Custom Installer Action

When you build a desktop installer project by using Visual Studio 2005, you can start only executables that you
install through your package. However, in our example, we want to launch the CeAppMgr application with the .ini
file we wrote to deploy our device installer to the connected device automatically. You can provide custom actions
in the form of a managed installer .dll file, an executable, or a script. In our case, a Visual Basic Scripting Edition
(VBScript) file is preferable because of the simple nature of the task to be performed, and it will not introduce
.NET Framework dependencies for the desktop computer. Following is a very simple VBScript file that can be
called from a custom action. It consists of only two lines:

Set objShell = CreateObject("Wscript.Shell")

objShell.Run(Session.Property("CustomActionData"))

Wscript.Shell is a component of the VBScript runtime that provides a number of shell methods. In this case, we
use Run, which is passed a string containing the application name and optionally arguments separated with
spaces. It is similar to the System.Diagnostics.Process.Start method in managed code. CustomActionData is a
named property that you can set for each custom action in the installer project.

With the Custom Actions editor, you can set tasks to run at various stages in the installation process. To run the
Add/Remove Programs tool, you must determine the path to the CeAppMgr component of ActiveSync. To
determine the ActiveSync path, add a registry check to the start actions for the installer project. With the
registry check, you can cancel installation of the package if a version of ActiveSync is not installed on the
computer. The ActiveSyncRegistrySearch search looks in the HKEY_LOCALMACHINE\SOFTWARE\
Microsoft\Windows CE Services key for the InstalledDir value, which is stored in a named value called
ACTIVESYNCDIR. The custom installer action is run in the Commit phase of installation so that it runs only if the
rest of the package is successfully installed. It passes the following string to the VBScript:

"[ACTIVESYNCDIR]\CeAppMgr.exe" "[TARGETDIR]\Terminal.ini"

Running the Installer

After you have built the project and created an .msi file, you can start the Windows Installer package to install
your application. The installer package installs all the files onto the desktop computer and then starts the
ActiveSync installer. If a device is connected, installation will take place automatically; otherwise, the user
receives a message that the installation will take place when a device is next connected.

If you run the installer on Windows Vista, which includes the new User Account Control feature, the installation
pauses until the user permits the installation to proceed by supplying Administrator credentials.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

This chapter describes the process of adding Help content to your project, investigates methods you can use to
lock down the target device user interface, and describes the process of building an installer. The .cab file
generated by the installer can be deployed onto a device by using a storage card, from a Web link or an e-mail
message, or manually by copying the file to the device. Finally, in this chapter we built a sample desktop
installer package that can be run from the user's desktop computer to fully install the software on the device.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Part II: Solutions for Challenges in Mobile Applications

In this part:

Chapter 7: Exchanging Data with Backend Servers

Chapter 8: Networking

Chapter 9: Getting Connected

Chapter 10: Security Programming for Mobile Applications

Chapter 11: Threading

Chapter 12: Graphics Programming

Chapter 13: Direct3D Mobile

Chapter 14: Interoperating with the Platform

Chapter 15: Building Custom Controls

Chapter 16: Internationalization

Chapter 17: Developing with Windows Mobile

Chapter 7. Exchanging Data with Backend Servers

In this chapter:

Architecting a Data Synchronization Application 243

Using Web Services for Data Synchronization 246

Accessing SQL Server Directly by Using SqlClient 267

Synchronizing Data Using SQL Server 2005 Compact Edition Remote Data Access 275

Replicating Data Using SQL Server Merge Replication 293

Chapter 3, "Using SQL Server 2005 Compact Edition and Other Data Stores," starts by stating, "Most business
applications need to store, organize, and view data." You can easily extend that statement by adding and
transfer data to and from backend servers. Very few enterprise applications run entirely self-contained on a

mobile device with no need to communicate with the outside world. Instead, most applications are mobile
components of a bigger enterprise solution. These solutions provide users the ability to gather data in the field,
for example, in stock management or when support personnel who operate in customer-facing roles outside the
office must take sales orders, service equipment, or track goods distribution. In all these cases, the devices need
to hold data to allow the application to operate, and the devices must transmit data gathered in the field to
enterprise servers. This chapter discusses how to synchronize data between applications running on the device
and backend servers.

Architecting a Data Synchronization Application

When you connect mobile devices to an enterprise network, you must connect them directly to the local area
network (LAN) using WiFi, Ethernet cradles, or Microsoft ActiveSync over a direct cable connection or Bluetooth
to a LAN-connected computer, or you must provide some kind of gateway to which you can connect from the
Internet—a mobile gateway. You can synchronize to a mobile gateway using Web Services or Microsoft SQL
Server replication—both operate through a Web server running Microsoft Internet Information Server (IIS). The
Web services or SQL Server on your mobile gateway can communicate with backend systems and servers, tying
your mobile application into the wider enterprise operations. This basic architecture is shown in Figure 7-1.

Figure 7-1. Mobile rich clients connecting to the enterprise by using Web Services or SQL Server,
and then to backend systems

[View full size image]

Designing for the Mostly Disconnected Client

One tenet of mobile application architecture is that you must design for a mostly disconnected network. A device
that runs Microsoft Windows Mobile comes with many different communications capabilities: Depending on the
particular device, you have a choice of universal serial bus (USB) cable, WiFi, Bluetooth, and—on a phone device
—General Packet Radio Service (GPRS), Code-Division Multiple Access (CDMA), Universal Mobile
Telecommunications System (UMTS), or High-Speed Downlink Packet Access (HSDPA). Despite all these
connectivity choices, you cannot guarantee that at all times at least one of these will be available because you
may be in an area without cellular coverage or WiFi, and Bluetooth and cable connections are really only practical
for synchronizing with a computer (although there are exceptions).

As a result, usually you must design your applications to be able to operate without a live network connection.
There are exceptions of course; for example, if your application is a stock control application operating in a
warehouse or store that has reliable WiFi coverage, you can design the application under the assumption that the
network will be available at all times. Or your application could be a Web application—the ultimate thin client for
which the only software required on the device is a Web browser.

However, most mobile applications are rich clients, which means they are custom applications that must be
installed on the device and that use a custom user interface (UI) and some local data storage such as a SQL
Server Compact Edition (CE) database. A rich client application can operate without a live network but must
occasionally connect to a backend server to transfer data. It relies on the occasional availability of cellular phone
networks or WiFi, or it must be placed in a cradle connected to an Ethernet network or a desktop computer.

A typical design is when a device is left overnight in a cradle both to charge the device battery and to bulk
upload lookup (reference) data from backend servers by direct connection to a SQL Server or over the Internet
using Web Services or SQL Server replication. For example, for a mobile sales assistant application, the uploaded
data could be the current product catalog and price information. In the morning, the user removes the device
from the cradle and takes it out on the road. Often, the user will send the data gathered on the road by using
Web services; in the sales assistant application, this data could be relatively small messages required to enter
new orders and/or check product availability. This architecture is shown in Figure 7-1.

Usually, you design a mainly disconnected application to provide the same functionality to the user regardless of
the availability of an active network connection. Updates that must be sent to a server simply are queued until a
network is available because this is the simplest implementation of a rich client. Other designs are possible, such
as offering enhanced capabilities when a network is available and reduced capabilities when no network is

available. These are design details that you must consider when analyzing the operational requirements of your
application. Cost is another important consideration: updates sent over a phone network usually cost much more
than those sent over a WiFi network or a direct cable connection, so this too may influence your decisions on
what kind of data transfers you will allow over particular kinds of networks.

Designing for Stale Data

One thing is always true: Any data that you copy from a backend server and then store on the device to use
when the device is disconnected from the network is inherently stale from the moment it is stored. The data may
have been updated on the server, but the stored copy of the data that your application uses will not be
up-to-date until you next synchronize. You must analyze the consequences of this and design appropriate
safeguards to ensure that your mobile application cannot do any harm by using stale data.

You must also consider the potential consequences of data sent from the device that is based on stale data. The
data on the server may have changed since the last device sync, so you may need to implement logic on the
server to validate the update sent from the device before applying changes to your backend database.

The best advice is to try to cache lookup (that is, reference) data on the device that is not very volatile and make
sure you perform appropriate business logic processes to validate data sent from a device.

Choosing the Synchronization Technique

This chapter discusses four synchronization techniques:

Web Services This standards-based technique works over Web protocols and is perfect for small
transactions. Web Services works with a wide variety of servers from different vendors and is simple to
program. It is not solely a data synchronization technique, but it is designed as a request–response
message transfer, and therein lies its attraction: It is very flexible.

SQL Server client If your mobile client can connect directly to the enterprise LAN, the simplest approach
is to connect directly to your backend SQL Server. You cannot use this technique over the Internet (unless
you connect first over a virtual private network [VPN]).

SQL Server 2005 Compact Edition Remote Data Access (RDA) This synchronization technique is
quite simple to use, and with it you can copy a data table to the device, track any changes your
application makes, and then simply upload the changes back to the server to update the master table.
This is an excellent technique for a small number of clients, but the conflict resolution capabilities are not
sophisticated—if you have two or more clients all working on copies of the same source table and they all
update changes to the same rows, the last updater wins and overwrites changes made by the other
clients.

SQL Server 2005 replication This is a sophisticated synchronization technique designed for use by
multiple updaters. Each time a client synchronizes, it uploads changes it has made and then downloads all
changes made by all clients so that the local copy of the data remains up-to-date. SQL Server replication
allows you to partition data to avoid update conflicts and has capabilities for conflict resolution.

Note

Microsoft is working on new synchronization tools. At the time of this writing, it
provides no tools support for Microsoft .NET Compact Framework clients but will
provide support after the release of Microsoft Visual Studio Code Name "Orcas." For
more information about Synchronization Services for ADO.NET, see the team's
Weblog at blogs.msdn.com/synchronizer/default.aspx.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Using Web Services for Data Synchronization

When you add a Web reference to your client-side application project, the Visual Studio Add Web Reference tool
generates a proxy class that includes methods that make it easy to make calls to the Web service, receive the
response, and make the received data available to your application. When Visual Studio detects that the Web
service returns a strongly typed DataSet object, it generates code in the proxy class that creates an instance of
that strongly typed DataSet as the return value for the proxy class method that calls the Web method.

In .NET Compact Framework 1.0, the tool-generated code for a Web service that uses strongly typed DataSet
objects requires classes that are not supported by the runtime and Base Class Libraries, and so you must be
careful to use only vanilla DataSet objects (or, of course, your own custom data objects) as parameters or return
types in Web methods that are for use by .NET Compact Framework 1.0 clients.

Fortunately, in version 2.0, such usability considerations are a thing of the past because the Visual Studio Add
Web Reference tool generates code for strongly typed DataSet objects that is fully compatible with .NET Compact
Framework 2.0. As a result, considerations with Web Services shift to more interesting problems, such as
follows:

How to authenticate Web Services clients

How to use Web Services on a device that may be only occasionally connected to a network

How to compress Web services payload to reduce communication costs

Authenticating Web Services Clients

Applications you write with the .NET Compact Framework that access Web Services do so over Hypertext Transfer
Protocol (HTTP) protocols. If your Web service is a Microsoft ASP.NET Web service running on an IIS Web server,
you can configure the Web service to require Basic, Digest, or Integrated Windows authentication, just as you
can for a regular Web site (see Figure 7-2).

Figure 7-2. Setting authentication options in IIS Manager for an ASP.NET Web service

[View full size image]

The mechanisms used for Basic authentication are actually a part of HTTP and are not vendor-specific, so you can
authenticate Web Services clients using Basic authentication whether the server is a Windows server running IIS
or a server running other Web server software, such as Apache. Remember that when you send credentials to a
remote server using Basic authentication, the data transmits in clear text and is vulnerable to discovery by an
attacker. Always use Secure Sockets Layer (SSL) to encrypt data in transit to ensure that it cannot be
intercepted. If your application operates over an intranet and accesses a Web service on a Windows server
running IIS, you also can use Integrated Windows authentication to identify the client device.

When you add a Web reference to your Visual Studio .NET 2003 project for a Web service that requires
authentication, the system prompts you for your credentials, as follows:

Visual Studio uses the credentials you enter to download the Web Services Description Language (WSDL) file
that defines the Web service, but it does not save the credentials in the client code it adds to your project to
access the Web service. You must create a System.Net.NetworkCredential object and set the Credentials property
of your Web Service proxy object. (The same technique is required when you make a network call using the
System.Net.WebRequest class.)

For example, the following Windows Forms application contains two text box controls that accept a user name
and a password, a button that starts a Web service when clicked, and a label to display the string sent by the
Web method or to display an error message. The project has a Web reference to a Web service that has been set
up to require Basic authentication. The Web service contains a single Web method, which has the following code:

[WebMethod]
public string HelloWorld()
{
 return "Hello authenticated user! Your username: "
 + System.Threading.Thread.CurrentPrincipal.Identity.Name;
}

The code for the button1_Click event in the client program is as follows:

private void button1_Click(object sender, System.EventArgs e)
{
 BasicAuthWebService ws = new BasicAuthWebService();
 // Create a NetworkCredential object with the user name
 // and password as entered in the TextBox controls.
 NetworkCredential creds = new NetworkCredential(
 UsernameTextBox.Text, PasswordTextBox.Text);
 // Use this NetworkCredential object with the Web service proxy.
 ws.Credentials = creds;

 try
 {
 ResponseLabel.Text = ws.HelloWorld();
 }
 catch (Exception exp)
 {
 ResponseLabel.Text = exp.Message;
 }
}

This method creates a new instance of the Web Services proxy class BasicAuthWebService. It then creates a
NetworkCredential object and sets the Credentials property of the Web Services proxy class instance to that.

When the user enters an incorrect user name and/or password, the call to the Web method throws an exception
with the message "The remote server returned an error: (401) Unauthorized." If valid credentials are entered,
the Web method returns its response, a string that identifies the Windows user account with which the user has
logged on.

Custom Authentication with SOAP Headers

Another option is to pass data in the Simple Object Access Protocol (SOAP) headers along with your Extensible
Markup Language (XML) Web Services request. If you use this process, you do not implement authentication and
authorization using the facilities of the IIS server, but instead you pass this information in code in your Web
method. Consequently, this approach works with servers from any vendor. If you are using an IIS server, you
should set the IIS authentication to Anonymous authentication.

To write a Web service using ASP.NET that requires a SOAP header to be present, you first define a class that
derives from System.Web.Services.Protocols.SoapHeader, which defines the object to be passed in the SOAP
header. Then you declare a public field of that type inside your Web Services class:

using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

namespace MobileDevelopersHandbook
{

 // AuthHeader class extends from SoapHeader.
 public class AuthHeader : SoapHeader
 {
 public string Username;
 public string Password;
 }

 /// <summary>
 /// SOAPheaderService will contain a Web method that requires that a
 /// AuthHeader object be passed in the SOAP headers.
 /// </summary>
 public class SOAPheaderService : System.Web.Services.WebService
 {
 // Declare a public field of type AuthHeader, which becomes
 // part of the Web service contract.
 public AuthHeader AuthToken;
 . . .
 }
}

Then, for any Web method for which you require the client to pass an AuthHeader object in the SOAP headers,
decorate the method with a SoapHeader attribute. The first parameter is the name of the public field in the class
that defines the type of the header.

[WebMethod(Description=
 "This method requires a custom soap header set by the caller")]
[SoapHeader("AuthToken", Direction=SoapHeaderDirection.In)]
public bool Authenticate()
{
 // Check for header
 if (AuthToken == null)
 {
 throw new Exception("AuthHeader not passed in SOAP headers");
 }

 // Code to authenticate a user using the AuthToken object.
 // In this simple example, we just look for hard-coded values,
 // but a real application might look up users in a database or
 // use some other form of authentication.
 if (AuthToken.Username == "andy" & AuthToken.Password == "P455w0rd")
 return true;
 else
 return false;
}

In this example, the second parameter sets the Direction property of the SoapHeaderAttribute object, which
takes a SoapHeaderDirection enumeration, which has the values shown in Table 7-1.

Table 7-1. SoapHeaderDirection Enumeration

SoapHeaderDirection Member Description

In The header is sent from client to server.

InOut The header is sent to both the server and the client.

Out The header is sent from server to client only.

Fault The header is sent to the client only when the XML Web
Services method throws an exception.

SoapHeaderAttribute can be used to decorate methods in a Web service, as shown in this example, and it can
also be used to decorate methods in the proxy class used on the client side. When you use it on the client side,
SoapHeaderDirection.Fault is not supported—if the client-side method throws an exception, it is not propagated
back to the server as a SOAP exception.

On the client side, the public field AuthHeader is exposed in the WSDL for the Web service. When you add a Web
reference to the Web service to your project, the code that is generated includes the definition of the AuthHeader
class, and the proxy class that is generated for the Web service contains the AuthHeaderValue property, which
the client-side code uses to set the value in the SOAP headers. The client creates an instance of AuthHeader, and
then sets the AuthHeaderValue property to that instance. For example, the following method creates an instance
of the Web Services proxy and calls the Authenticate method of the Web service, passing an instance of
AuthHeader in the SOAP headers:

private void invokeIt()
{
 // Create a proxy for the Web service.
 SOAPheaderService ws = new SOAPheaderService();
 // Create the AuthHeader object for the SOAP header.
 AuthHeader hdr = new AuthHeader();
 hdr.Username = "andy";
 hdr.Password = "P455w0rd";
 // Set the AuthHeader SOAP header to the AuthHeader object instance.
 ws.AuthHeadervalue = hdr;

 // Call the Web method.
 bool response = ws.Authenticate();
}

This sample code uses string literals for the user name and password to keep the example simple. In practice,
you should read this data from an external source and should not store this kind of data inside your program
code. See Chapter 10, "Security Programming for Mobile Applications" for recommendations on good practice.

You can find a full working sample of this application in the CustomSoapHeaders project in the code samples on
this book's companion Web site.

Using Web Services on Occasionally Connected Clients

Although Web Services provides a flexible solution that can be used for many applications and with servers from
many different vendors, one thing it does not do is offer very much in the way of resilience or any built-in retry
mechanisms. If you are developing client applications that are connected to a reliable broadband Internet
connection, resilience and retry capabilities are not factors you need to worry about very much. However, if your
client application runs on a mobile device that may be only intermittently connected to a USB cable, a WiFi
network, or a cellular network, you must spend a great deal of time and effort considering what happens if you
want to make a Web service call and there is no network available, or if a call fails halfway through.

Fortunately, the patterns and practices group at Microsoft has addressed this problem in the Mobile Client
Software Factory, which works with devices that run Windows Mobile 5.0 and later. One of the application blocks
included in this suite of tools is the Disconnected Service Agent. With the Disconnected Service Agent, you can
queue Web service requests and have them automatically dispatched when a network becomes available, and, in
the event of failure, you can configure the number of times the requests will be retried.

The downloadable code for this chapter on this book's companion Web site includes a sample application called
DisconnectedServiceAgentExample. This application simulates a mobile sales assistant application and shows a
DataGrid of some fictional products. If you click a product name, you see the details for that item and a menu
link that you can use to post an order back to the server. This application requires a Web service to be running
on your development computer. (For instructions on configuring the Web service and updating the Web reference
in your project, see the readme file that accompanies the sample code.)

To run this test application, you need not download and install the Mobile Client Software Factory, but if you
want to develop your own applications using the Disconnected Service Agent or run through the steps described
in the next section that use add-ons the Mobile Client Software Factory installs in Visual Studio, you will need to
do so. See Chapter 1, ".NET Compact Framework—a Platform on the Move," for details about how to obtain the

Mobile Client Software Factory.

Getting Started with the Disconnected Service Agent

First, you must add a reference to the Mobile.DisconnectedAgent Application Block and to the four other Mobile
Application Blocks that the Disconnected Service Agent uses. The Mobile Client Software Factory ships these
application blocks as full Visual Studio 2005 projects with all source code, so either you can add a reference to
the projects where you installed them (by default this is at C:\Program Files\Mobile Client
SoftwareFactory\Application Blocks) or you can copy the projects into your own application directory structure
and add them to your solution. The application blocks you need are the following:

Mobile.DisconnectedAgent

Mobile.Configuration

Mobile.ConnectionMonitor

Mobile.DataAccess

Mobile.EndpointCatalog

Setting the Configuration File

The operation of the Disconnected Service Agent is controlled by settings in an application configuration file.
There is no built-in support in .NET Compact Framework 2.0 for reading application configuration files, but the
Mobile.Configuration Application Block adds that support. The .config file for the sample application is shown in
Listing 7-1.

Listing 7-1. App.config File for a Disconnected Service Agent Application

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="Connections"
 type="Microsoft.Practices.Mobile.ConnectionMonitor.Configuration. ...
...ConnectionSettingsSection, Microsoft.Practices.Mobile.ConnectionMonitor"
 />
 <section name="Endpoints"
 type="Microsoft.Practices.Mobile.EndpointCatalog.Configuration. ...
...EndpointSection, Microsoft.Practices.Mobile.EndpointCatalog"
 />
 </configSections>

 <Connections>
 <ConnectionItems>
 <add Type="CellConnection" Price="8"/>
 <add Type="NicConnection" Price="2"/>
 <add Type="DesktopConnection" Price="1"/>
 </ConnectionItems>
 </Connections>

<Endpoints>
 <EndpointItems>
 <add Name="Orders"
 Address="http://myWebServer/OrdersServices/OrdersService.asmx"
 UserName="PDAUser" Password="P@ssw0rd"/>
 </EndpointItems>
</Endpoints>
</configuration>

The key point to notice about Listing 7-1 is that it consists of three main sections inside the <configuration>
element:

<configSections> The <configSections> section describes the types that define the format of the other
configuration sections, <connections> and <Endpoints>.

<connections> The <connections> section describes the three types of network connections you will
find on a mobile device. You should not change this section. Each connection type has an associated price
attribute that compares the types for their relative cost—both in terms of the likely financial cost of using
the connection (in most countries, data communications over a cellular network are much more expensive
than is communication over a USB connection to a broadband-connected computer) and in terms of
bandwidth costs. The three connection types are as follows:

CellConnection A data connection over a cellular telephone network, using GPRS, CDMA, HSDPA,
or UMTS

NicConnection Connection over WiFi or a wired Ethernet connection

DesktopConnection A connection through a computer over a USB cable that uses ActiveSync as
the communications medium

<Endpoints> The <Endpoints> section describes one or more endpoints, which is a name you give to an
addressable resource, specifying the Uniform Resource Locator (URL) and optionally credentials needed to
access that resource.

Caution

The configuration file shown here includes valuable data such as URLs and user
credentials. Although it is shown in clear text here, in most commercial
applications, you will want to encrypt this data. Fortunately, the
Mobile.Configuration Application Block supports encrypted .config files. See Chapter
10 for an example of how to encrypt configuration data.

Generating the Disconnected Service Agent Proxy

The first thing you need to do is add a Web reference to your Web service in just the same way as you always do.
Then you must activate the Visual Studio add-ons included in the Mobile Client Software Factory (MCSF) (called
"recipes") to generate the Disconnected Service Agent wrapper for your Web service proxy class.

Note

You must activate the MCSF package only if you want to create a Disconnected
Service Agent in an existing application. The Mobile Client Software Factory adds its
own solution template to the Visual Studio project templates, and if you create your
project that way, the MCSF package is already active. Be aware that if you use the
MCSF project template, Visual Studio creates a project that is built around use of
the mobile Composite UI Application Block, which is not covered in this book.

Enabling the MCSF Package

When you install the MCSF, two prerequisites are the Guidance Automation Extensions (GAX) and Guidance
Automation Toolkit (GAT) (see the MCSF installation guide for more information). These Visual Studio 2005
add-ons allow groups such as the Microsoft patterns and practices group to extend Visual Studio 2005 and
integrate their own dialog boxes, wizards, and documentation. After you install the GAX and GAT, you will find
the Guidance Package Manager on the Visual Studio 2005 Tools menu.

In the Guidance Package Manager, click the Enable/Disable Packages button, and on the next screen, select
Mobile Client Software Factory, as shown in Figure 7-3, and then click Next.

Figure 7-3. Activating the Mobile Client Software Factory guidance package

[View full size image]

The Guidance Package Manager loads the package and, on the next screen, gives you the option of running the
enclosed recipes immediately. Click Close because you need to run the Create Disconnected Service Agent recipe
against a Web reference.

Configuring the Disconnected Service Agent

Next, go to the Web References folder in Solution Explorer, right-click an existing Web reference, and click Mobile
Factory – Create Disconnected Service Agent. This starts the Create Disconnected Service Agent Wizard that
guides you through configuring your Disconnected Service Agent.

On the first page, enter the name of an endpoint you have defined in your App.config file, as shown in Figure
7-4. On the second page, you can define the default attributes for a request you queue with this Disconnected
Service Agent. In the example shown in Figure 7-5, new requests are queued with three stamps, which means
that the agent sends the request only if the currently active network connection has a price of three or less (in
other words, a DesktopConnection or a NicConnection, according to the configuration shown in Listing 7-1). If the
active network is a cellular connection, the request will be queued until a WiFi or desktoppassthrough connection
becomes active. The example in Figure 7-5 also sets the maximum number of retries in the event of failure to 10
and sets an expiry time of 1 day. If a message cannot be delivered in the configured number of retries or expiry
time, the agent moves it onto a dead letter queue, which is a table in a SQL Server 2005 Compact Edition
database that you must provide for the use of the Disconnected Service Agent.

Figure 7-4. Setting the endpoint name for the Disconnected Service Agent

[View full size image]

Figure 7-5. Configuring message expiry options

[View full size image]

Any options you set in this wizard merely establish defaults for this Disconnected Service Agent; you can set
different values at run time.

Initializing the Request Manager

The principal object that drives the Disconnected Service Agent functionality is the Request Manager, which you
must configure in code at run time. Listing 7-2 shows the code that is required in the InitializeRequestManager
method, which first creates an instance of a mobile connection monitor responsible for notifying the Request
Manager of changes in the active network. The code then creates a
Microsoft.Practices.Mobile.DataAccess.Database object for a SQL Server Compact Edition database that already
exists in the project and an IEndpointsCatalog instance that the Request Manager uses to discover details of
available endpoints from the configuration file. These different objects are all passed as arguments to the
RequestManager.Initialize method, which sets up the required database tables in the SQL Server CE database
and starts the Request Manager. The final line of this method calls RequestManager.StartAutomaticDispatch,
which means that the Request Manager will start trying to process a queued Web service request as soon as it is
queued. The alternative is to manage dispatch of messages yourself in your application code.

Listing 7-2. Abbreviated Code from the Sample Application That Initializes the Request Manager

using System;
using System.ComponentModel;
using System.Windows.Forms;
using Microsoft.Practices.Mobile.Configuration;
using Microsoft.Practices.Mobile.ConnectionMonitor;
using Microsoft.Practices.Mobile.DisconnectedAgent;
using Microsoft.Practices.Mobile.DataAccess;
using Microsoft.Practices.Mobile.EndpointCatalog;

namespace MobileDevelopersHandbook.DSAExample
{
 public partial class MainForm : Form
 {
 private ConnectionMonitor connectionMonitor;
 private RequestManager requestManager;
 private Database database;
 private IEndpointCatalog endpoints;

 public MainForm()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 ...

 InitializeRequestManager();

 }

 /// <summary>
 /// Initialize Disconnected Service Agent.
 /// </summary>
 private void InitializeRequestManager()
 {
 connectionMonitor =
 ConnectionMonitorFactory.CreateFromConfiguration();

 // Init database object
 string filename = System.IO.Path.Combine(
 DirectoryUtils.BaseDirectory, "AppDatabase.sdf");
 string connectionString =
 String.Format("Data Source=\"{0}\"", filename);
 database = new SqlDatabase(connectionString);

 // ...and an IEndpointsCatalog.
 IEndpointCatalogFactory factory =
 new EndpointCatalogFactory("Endpoints");
 endpoints = factory.CreateCatalog();

 // Finally, init the agent, using the database, endpoint
 // catalog, and connection monitor.
 IConnectionMonitor connections =
 new ConnectionMonitorAdapter(connectionMonitor);
 requestManager = RequestManager.Instance;
 requestManager.Initialize(endpoints, connections, database);
 requestManager.StartAutomaticDispatch();

 requestManager.RequestDispatched += new
EventHandler<RequestDispatchedEventArgs>(requestManager_RequestDispatched);
 }

 void requestManager_RequestDispatched(
 object sender, RequestDispatchedEventArgs e)
 {
 if(e.Result == DispatchResult.Failed)
 {
 MessageBox.Show("Request failed to endpoint: "
 + e.Request.Endpoint);
 }
 }
 ...
 }
}

Queuing a Request

After the Request Manager is initialized, you can post Web service calls to the queue. You post Web service calls
by creating an instance of the Disconnected Service Agent you created earlier and then calling the method in
that class of the same name as the Web method in the original Web service. For example, if your Web method is
called PostOrder, you will find a method of the same name in the Disconnected Service Agent. For example, the
following code is taken from the sample application:

using System;
using Microsoft.Practices.Mobile.DisconnectedAgent;
using
 MobileDevelopersHandbook.DSAExample.DisconnectedAgents.OrdersWebService;

namespace MobileDevelopersHandbook.DSAExample
{
 public partial class OrderProductDialog : Form
 {
 ...

 private void QueueWebServiceRequest()
 {
 // Queue the order to the Disconnected Service Agent;
 ServiceDisconnectedAgent agent = new ServiceDisconnectedAgent(
 RequestManager.Instance.RequestQueue);

 agent.PostOrder(this.customerNameTextBox.Text,
 Int32.Parse(this.productIdTextBox.Text),
 Int32.Parse(this.quantityTextBox.Text));
 }
 }
}

Note that when you queue a Web service request, the Disconnected Service Agent stores the request details in a
table in the SQL Server CE database. This means that requests are stored and remain queued even if your
application exits, to be handled next time your application runs. The Disconnected Service Agent Application
Block provides an API you can use to interrogate the local request queue to find information about queued
requests.

Handling the Callback

Processing is now under the control of the Request Manager. When a network of the appropriate cost is active,
the Request Manager is responsible for calling the Web service using the user credentials (if any) specified in the
endpoint definition in the configuration file.

When you created the Disconnected Service Agent, the wizard generated a Callback class containing two
callbacks, one called On<webmethod>Return for a successful Web service call, and one called
On<webmethod>Exception that is called when the Web service returns a WebException. The exception callback
is also called if your own code running in On<webmethod>Return throws an exception.

In the example application, as shown in Listing 7-3, when a Web service call completes successfully, a
MessageBox is displayed and some code runs to update a record in the local SQL Server CE database; the
exception handler method throws a NotImplementedException. Of course, you should implement more
meaningful logic in a commercial application!

Listing 7-3. Callbacks for Handling a Successful and Unsuccessful Web Service Call

//--
// <auto-generated>
// This code was generated by the Mobile Client Software Factory.
// Runtime Version:2.0.50727.42
//
// Changes to this file will be preserved if code is regenerated.
// However, you must keep the method overrides in sync with the
// generated ServiceDisconnectedAgentCallbackBase class.
// </auto-generated>
//--
using Microsoft.Practices.Mobile.DisconnectedAgent;
using System;
using System.Windows.Forms;

namespace
 MobileDevelopersHandbook.DSAExample.DisconnectedAgents.OrdersWebService
{
 // Generated code for the Web service
 // Use this proxy to make requests to the service when working in an
 // application that is occasionally connected.
 public class ServiceDisconnectedAgentCallback :
 ServiceDisconnectedAgentCallbackBase
 {
 #region PostOrder

 public override void OnPostOrderReturn(
 Request request, object[] parameters, Int32 returnValue)
 {

 MessageBox.Show("Callback from Disconnected Service Agent");
 // Update the Orders table.
 OrdersResultSetResultSets.OrdersResultSet orders =
 new OrdersResultSetResultSets.OrdersResultSet();

 while (orders.Read())
 {
 ...
 }
 orders.Dispose();
 }

 public override OnExceptionAction OnPostOrderException(
 Request request, Exception ex)

 {
 throw new NotImplementedException("Not implemented", ex);
 }

 #endregion PostOrder

 }
}

Compressing Web Service Payload

One criticism that is often leveled against Web Services is that the SOAP message format it uses, being XML, is
verbose—you transfer a lot of bytes of data to convey a comparatively small amount of information. This is of
particular concern over slow communications networks, such as the GPRS or CDMA over cellular networks we
often have to use with mobile devices, because of the time taken to transfer data. Data communications over
cellular networks are also expensive, so if you can compress the SOAP messages, your costs will be reduced and
the communications will also be more reliable because the transfer time will be shorter.

One technique for compressing SOAP messages is to use SOAP extensions to intercept the SOAP message stream
on dispatch, compress the message, and then on receipt decompress the message (you can also use SOAP
extensions to apply other transformations on your messages, such as encryption). The following compression
technique was described by Mobile Devices MVPs Chris Forsberg and Andy Sjöström in an article on their Web
site at www.businessanyplace.net/?p=wscompress2; visit their site for additional technical information, including
a description of how to use standard HTTP 1.1 compression as an alternative to the SOAP extensions technique
described in the following subsections.

Coding a SOAP Extension for Compression

With SOAP extensions, you can access the actual network stream before it is deserialized into objects in the
framework, and vice versa. You can learn more about how this works by reading the topic "SOAP Message
Modification Using SOAP Extensions" in the .NET Developers Guide in the Visual Studio 2005 documentation.

At a technical level, you need a class that derives from System.Web.Services.Protocols.SoapExtensionAttribute,
which defines an attribute you can place on any Web method, and another class derived from
System.Web.Services.Protocols.SoapExtension, which implements the functionality associated with the attribute.
Listing 7-4 shows the implementation of these classes for message compression. The code shown is compatible
with both .NET Compact Framework 2.0 and the full .NET Framework 2.0.

Listing 7-4. Code to Define a SoapExtension and SoapExtensionAttribute for SOAP Message
Compression and Decompression

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Web.Services.Protocols;
using ICSharpCode.SharpZipLib.GZip;

namespace CompressionSOAPExtensionLibrary
{
 /// <summary>
 /// Define a class for the CompressionSoapExtension attribute.
 /// </summary>
 [AttributeUsage(AttributeTargets.Method)]
 public class CompressionSoapExtensionAttribute : SoapExtensionAttribute
 {
 private int priority;

 /// <summary>
 /// Returns the type of the object that actually performs the logic
 /// associated with this SOAP extension
 /// </summary>
 public override Type ExtensionType
 {
 get { return typeof(CompressionSoapExtension);}
 }

 /// <summary>
 /// The Priority property indicates the order of processing when
 /// several SOAP extensions are applied simultaneously.
 /// </summary>
 public override int Priority
 {

 get
 {
 return priority;
 }
 set
 {
 priority = value;
 }
 }
 }

 public class CompressionSoapExtension : SoapExtension
 {
 Stream oldStream;
 Stream newStream;

 public override Stream ChainStream(Stream stream)
 {
 oldStream = stream;
 newStream = new MemoryStream();
 return newStream;
 }

 public override object GetInitializer(
 LogicalMethodInfo methodInfo, SoapExtensionAttribute attribute)
 {
 return attribute;
 }

 public override object GetInitializer(Type serviceType)
 {
 return typeof(CompressionSoapExtension);
 }

 public override void Initialize(object initializer)
 {
 CompressionSoapExtensionAttribute attribute =
 (CompressionSoapExtensionAttribute)initializer;
 }

 public override void ProcessMessage(SoapMessage message)
 {
 Byte[] buffer = new Byte[2048];
 int size;

 switch (message.Stage)
 {
 case SoapMessageStage.AfterSerialize:
 // This is called after a SOAP message is serialized
 // but before it goes over the wire.
 newStream.Seek(0, SeekOrigin.Begin);
 GZipOutputStream zipOutputStream =
 new GZipOutputStream(oldStream);
 size = 2048;
 while (true)
 {
 size = newStream.Read(buffer, 0, buffer.Length);
 if (size > 0)
 zipOutputStream.Write(buffer, 0, size);
 else
 break;
 }
 zipOutputStream.Flush();
 zipOutputStream.Close();
 break;

 case SoapMessageStage.BeforeDeserialize:
 // This is called when the incoming message has been
 // received.
 GZipInputStream zipInputStream =
 new GZipInputStream(oldStream);
 size = 2048;
 while (true)
 {
 size = zipInputStream.Read(
 buffer, 0, buffer.Length);

 if (size > 0)
 newStream.Write(buffer, 0, size);
 else
 break;
 }
 newStream.Flush();
 newStream.Seek(0, SeekOrigin.Begin);
 break;
 }
 }
 }
}

Tip

You can create a simple class library containing the code shown in Listing 7-4.
Create it as a Windows CE 5.0 class library, and then you can use it with all mobile
platforms and also with the full .NET Framework.

The CompressionSoapExtensionAttribute class defines the [CompressionSoapExtension] attribute; the
ExtensionType property in this class returns the type that actually performs the work, which is the
CompressionSoapExtension defined in the other class in Listing 7-4.

In CompressionSoapExtension, the ChainStream method is the one that actually hooks the message stream. The
real work occurs in ProcessMessage, which is called at four different stages of message processing so that you
perform different processing depending on the value of the Stage property of the SoapMessage. The different
stages are as follows:

BeforeSerialize Called before the object to be sent out is serialized to SOAP

AfterSerialize Called after the object has been serialized and before it gets sent out over the wire

BeforeDeserialize Called when an incoming message has been received, but before it has been
deserialized

AfterDeserialize Called after the incoming message has been deserialized

You must compress outgoing messages after they have been serialized but before they are sent out over the
wire, and decompress incoming messages when they have been received but before deserialization takes place.
As you can see in Listing 7-4, the processing associated with SoapMessageStage.AfterSerialize takes the
oldStream (the stream containing the SOAP message), zips it using a GZipOutputStream, and writes it to
newStream, which then becomes the data that is sent out over the wire.

The processing for SoapMessageStage.BeforeDeserialize reverses this for incoming messages: the oldStream is
processed by a GZipInputStream object to unzip it and the result is written to newStream. The
GZipOutputStream and GZipInputStream objects that perform the compression and decompression operations
are in the open source SharpZipLib library, available on the IC#Code Web site at
www.icsharpcode.net/OpenSource/SharpZipLib/.

Using the CompressionSoapExtension

All that remains is to decorate the methods to which you want to apply compression. One advantage of using
SOAP extensions is that you can apply the processing on a method-by-method basis so that if you have a Web
service that sends only a small payload, you might not want to use compression because to do so would almost
certainly increase the processing time with little benefit for the size of the message. The following code sample
shows how the CompressionSoapExtension is applied to a Web method called GetCustomers, which returns a
DataSet:

 [WebMethod]
 [CompressionSoapExtension]
 public CustomersDataSet GetCustomers()
 {
 CustomersDataSet ds = new CustomersDataSet();
 ta.Fill(ds.Customers);
 return ds;
 }

You must also apply the attribute to the matching method in the Web service proxy in the .NET Compact
Framework client. The easiest way to do this is to add your Web reference to your project in the normal way and

then click the Show All Files button at the top of Solution Explorer so that you can see the Reference.cs/.vb file:

Edit this file, and apply the [CompressionSoapExtension] attribute to the appropriate methods, for example:

 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "http://MobileDevelopersHandbook.org/GetCustomers", ...)]
 [CompressionSoapExtension]
 public CustomersDataSet GetCustomers() {
 object[] results = this.Invoke("GetCustomers", new object[0]);
 return ((CustomersDataSet)(results[0]));
 }

Warning

Remember that every time you refresh the Web reference, the contents of this file
will be regenerated by the Visual Studio Add Web Reference tool, so you will have
to reapply these updates. An alternative is to extend the tool-generated class by
using partial classes and put your own methods in the partial class file, which will
not be overwritten when you update the Web reference.

The results of this are quite impressive. In the code for this chapter on the companion Web site, you can find the
WSCompression sample that calls a Web service that returns a DataSet containing the Customers table from the
standard Northwind sample database. The Web service contains two Web methods: GetCustomers(), which
returns the DataSet uncompressed, and GetCompressedCustomers(), which returns the same data, but using the
CompressionSoapExtension.

If you use some kind of SOAP trace tool, such as the free TcpTrace from www.pocketsoap.com/tcptrace/, you can
see the size of the HTTP messages that are sent. The size of the uncompressed message is 39,132 bytes, but
once compressed, the size falls to 8,348 (as shown in Figure 7-6), a reduction of nearly 80 percent.

Figure 7-6. TcpTrace of the HTTP messages sent with the SOAP message compressed

[View full size image]

You might suppose that the computational effort required to perform the compression and decompression on the
mobile device client would make the call to the Web method take longer. In fact, even using the emulator, using
virtually a direct network connection, the reduction in time to transfer the data easily compensates for the
additional computation time. In a rough series of tests using the emulator (five calls, discarding the time taken
to make the first call), transfer of the uncompressed data took an average of 5,128 milliseconds, while that of the
compressed data took 4,936 milliseconds. Over a slower network, the time advantage for the transfer of
compressed data should be even more pronounced, which leads to the conclusion that using compression with
Web services that return medium to heavy payloads should be the norm, rather than the exception.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Accessing SQL Server Directly by Using SqlClient

If you can connect your device to your LAN, using WiFi or desktop passthrough (meaning your device uses
ActiveSync to connect to a computer that is connected to the LAN), you can interact directly with a SQL Server
2000, SQL Server 2005, or SQL Server 2005 Express database server. Before you can connect to SQL Server from
an application, you must add a reference in the Visual Studio .NET project to the SQL Server managed provider,
which is listed in the Add Reference dialog box as System.Data.SqlClient. Alternatively, you can create a project
data source that connects to your SQL Server and then drag it onto a form, in which case the designer adds the
appropriate references to your project for you.

The ability to create a data source for a SQL Server database is a significant new feature in Visual Studio 2005.
In Visual Studio .NET 2003, building applications running on the .NET Compact Framework 1.0 runtime, you
cannot drag SQL Server database tables or views from the Server Explorer into Forms Designer to automatically
generate managed provider and dataset objects. You must create any such objects that you need in code.

In Visual Studio 2005, if you are building a .NET Compact Framework 2.0 project, you can create a project data
source and drag it from the Data Sources window into the Forms Designer in exactly the same way as we
described for a SQL Server 2005 Compact Edition database in Chapter 3. You must remember three things when
you are using a SQL Server 2000 or SQL Server 2005 database for your data source:

When you create your database connection, at the beginning of the data source creation process, you
must select the Microsoft SQL Server (SqlClient) data source, which uses the .NET Framework Data
Provider for SQL Server, as shown in the following graphic:

[View full size image]

You cannot use a SqlCEResultSet with a SQL Server data source.

The connection string is different, in particular in presenting user credentials for logging on to the server.
(More on this in the next section.)

In all other respects, you can follow the instructions on how to create a project data source and bind Windows
Forms controls to your data using a BindingSource component given in Chapter 3.

Understanding Differences from the Desktop .NET Framework

Before we examine how you program the System.Data.SqlClient namespace in more detail, this section mentions
some of the differences between the .NET Compact Framework and the desktop .NET Framework.

Only TCP/IP Connections Are Supported

Only TCP/IP connections to SQL Server are supported. You'll get an error if you use the Network Library keyword

with any network library name (other than the default) in the connection string. Note that by default the TCP/IP
transport is disabled in SQL Server 2005 Developer Edition, Evaluation Edition, and Express Edition. You must
run the SQL Server Configuration Manager to turn it on, as shown in Figure 7-7, and then stop and restart the
database service.

Figure 7-7. Turning on TCP/IP transport support in SQL Server Configuration Manager

[View full size image]

Note that if you are using SQL Server 2000 or SQL Server 2005 configured to run only a single instance (the
default), TCP/IP communication uses port 1433, so you should ensure that any firewalls you must cross are
configured to allow traffic on this port. If you have configured a named instance, the database engine
dynamically allocates an unused TCP port the first time it is started, so you must configure firewalls to allow
traffic on that port. (Use the SQL Server 2005 Configuration Manager to discover which port is assigned.)

Implementing Transactions

The .NET Compact Framework doesn't support distributed transactions (such as those that can be achieved using
SQL Server Distributed Transaction Coordinator [DTC], Microsoft Transaction Services [MTS], or COM+
components) across databases or servers. You can use transactions on a single database on one server.

Establishing Connections

The .NET Compact Framework doesn't support connection pooling. You can't use any of the connection-pooling
keywords or values in the connection string. (You'll get an error if you try it!) Specifically, the connection string
values that are not in use are Connection Lifetime, Connection Reset, Enlist, Max Pool Size, Min Pool Size, and
Pooling. Using Encrypt=true to request an encrypted connection is not supported either.

Programming System.Data.SqlClient

A detailed look at accessing data in a SQL Server database, with a sample application, follows. The sample
application, SqlClientExample, is available on this book's companion Web site. The sample retrieves some data
from SQL Server that is to be read-only in the application and that can be collected all in one go. The sample
application creates from scratch the ADO.NET objects it needs instead of creating a project data source (the
technique described in Chapter 3, and a feature not supported by .NET Compact Framework 1.0) so that the code
used is compatible with .NET Compact Framework 1.0 as well as version 2.0.

To run the sample, you must set up a database on your database server. There is an SQL script file and a readme
file that contains instructions on how to set up the database. You must also configure an SQL login for a valid
Windows account—again, see the readme for instructions.

Before you run the sample application, edit the code to set the name of your database server in the Hostname
variable (see Listing 7-5). Then run it, supplying the user name and password of the Windows user account for
which you created the database login.

Tip

Do not make the common mistake of using localhost or (local) for the server name
in your connection strings. That works only when the client code runs on the same
computer as the database server. Code running on a mobile device—even on a
Visual Studio 2005 emulator—runs on a different computer, so you must use the
correct name for the computer where SQL Server is running.

Figure 7-8 shows the application's form. The sample application retrieves the data into a ListBox control when
the user clicks a button. (In practice, however, this sort of code might be found in the form's Load event handler,
or it may run from some business logic rather than in a button's Click event handler.)

Figure 7-8. SqlClientExample sample application

The most important section of code in this sample application is shown in Listing 7-5. The application uses a
custom class called NetworkCredentials and a form, NetworkCredentialsForm (both not shown), which are
responsible for storing and setting a user name and password. Then it builds up the connection string,
incorporating the user name and password, opens the connection, and reads the data using a SqlDataReader.
Notice how the code is careful to dispose of the SqlCommand and SqlConnection objects; it is very important to
dispose of database objects to avoid memory leaks.

Listing 7-5. Code to Open a Connection to a SQL Server Database and Use a SqlDataReader to

Read Data

using System;
using System.Data;
using System.Data.SqlClient;
using System.Windows.Forms;
...

// TODO: Change this to your own server name.
private readonly string Hostname = "MYSERVER";

private void buttonGetData_Click(object sender, EventArgs e)
{
 // Get the user credentials, if not already set.
 if (NetworkCredentials.Instance.Username == null)
 {
 // Create an instance of custom form for gathering credentials.
 using (NetworkCredentialsForm dlg = new NetworkCredentialsForm())
 {
 dlg.ShowDialog();
 }
 }

 SqlConnection conSql;
 SqlDataReader rdrOvertimeRates = null;
 listBoxResults.Items.Clear();
 labelStatus.Text = "Connecting...";
 this.Refresh();

 string connString = "Server=" + Hostname + ";Database=DotNetCF;"
 + "Integrated Security=true;UID="
 + NetworkCredentials.Instance.Username + ";Password="
 + NetworkCredentials.Instance.UserPassword;

 using (conSql = new SqlConnection(connString))
 {
 using (SqlCommand sqlGetOvertimeRates = new SqlCommand(
 "SELECT OvertimeRateID,Description " +
 "FROM OvertimeRates " +
 "ORDER BY Description ",
 conSql))
 {
 try
 {
 //Open the connection.
 conSql.Open();
 //Get the records using a reader.
 rdrOvertimeRates = sqlGetOvertimeRates.ExecuteReader();
 //Put them in the list box.
 while (rdrOvertimeRates.Read())
 {
 listBoxResults.Items.Add(rdrOvertimeRates.GetString(1));
 }
 }
 catch (SqlException errSql)
 {
 DisplaySQLErrors(errSql);
 }
 finally
 {
 //Always close the connection.
 if (rdrOvertimeRates != null)
 rdrOvertimeRates.Close();
 conSql.Close();
 }
 }
 }

 labelStatus.Text = "Done";
}

Tip

Notice that the SqlClientExample application can take some time to establish a
connection to SQL Server. Connection pooling is not an option in the .NET Compact
Framework, so the SqlClientExample application experiences this delay every time
it connects to the database. To prevent this delay, one option is for the application
to create a form-level reference to a connection, open it in the form's Load event,
keep it open, and then close it when the application closes. However, this has the
downside of keeping the connection alive as long as the application runs, which
imposes additional burden on your database server.

Configuring your system for running the samples

To configure your system to run the code samples, the first thing you must do is create the
databases in your SQL Server. Transact-SQL (T-SQL) scripts are included in the downloadable code.
Refer to the accompanying readme for instructions.

Quite often, the hardest part of programming applications that access a backend server from a
mobile device is configuring networking correctly. We suffered ourselves while getting these
samples working for this book, and so here are the top tips:

TCP/IP If you use SqlClient to access SQL Server directly, remember that only TCP/IP
transport is supported. Remember also that TCP/IP transport is disabled by default in SQL
Server 2005; you must activate it in the SQL Server Configuration Manager.

Cradle the emulator If you are developing using the emulator, remember to cradle it (as
described in Chapter 2, "Building a Microsoft Windows Forms GUI"), and also set the This
Computer Connects To setting in ActiveSync Connection Settings to Work Network. You can
now use desktop passthrough successfully to access resources on the LAN (or, indeed, on
the Internet if you set the This Computer Connects To option to Internet and your computer
has an Internet connection). This applies to direct access using SqlClient and also to HTTP
access using RDA or merge replication.

If your development computer is disconnected from a network, your client software running
on the device will not be able to resolve host names and connections will fail. You can get
around this by installing and activating the Microsoft Loopback Adapter. For more
information, see the Microsoft Knowledge Base article titled "How to Install the Microsoft
Loopback Adapter in Windows XP" on the Microsoft Help and Support Web site at
support.microsoft.com/kb/839013. At the time of this writing, the best instructions for
installing the Loopback Adapter in the Windows Vista operating system are on the following
blog: blogs.msdn.com/briankel/archive/2006/12/03/how-to-install-the-microsoft-loopback-
adapter-on-windows-vista.aspx.

Remember that you can always use Microsoft Pocket Internet Explorer to check connectivity
with the SQL Server CE agent. Just enter the URL that you configured in the Configure Web
Synchronization Wizard (described later in this chapter), such as http://myserver
/mySyncVirtualDirectory/sqlcesa30.dll, and it will return an identification string.

Apart from that, failures in using RDA or merge replication usually come down to incorrect user
credentials that do not match those of either a Windows user account (where you are using
Windows Integrated authentication in IIS) or a SQL Server database login, or you have not granted
appropriate access permissions to the requested data in the database. For help in diagnosing
problems in logging in to the database, or in accessing data in the database, you can start the SQL
Server Profiler tool and request a trace that includes the Audit: Login Failed event. Then, you can
easily see what user name requested access to the database. See SQL Server Books Online for more
information about the SQL Server Profiler.

Setting the Connection String

Here is a sample of a connection string being passed to the constructor of a new SqlConnection object:

SqlConnection conSql2000 = new SqlConnection(
 + @"Data Source=MYSERVER\SQL2005; Database=DotNetCF"
 + "Integrated Security=true; UID=Andy; Password=p@ssw0rd "
);

There are two points of interest in the preceding sample:

Connecting to an instance of SQL Server

Security options

Connecting to an Instance of SQL Server

SQL Server 2000 and later allow the presence of more than one instance of SQL Server on a single physical
server. You must specify both the server name and the instance name when connecting to a SQL Server that has
been set up with a second instance. In the preceding sample, if you are connecting to a SQL Server 2005
instance called SQL2005 that is on the network server called MYSERVER, you would use the following:

Data Source=MYSERVER\SQL2005;

If you are connecting to just the default instance, you can specify only the server name.

Specifying Security Options

An important role of the SqlConnection object is to specify the security access to the SQL Server database from
your client application. Although the data stream between your application and the database server cannot be
encrypted, access to the database can be authenticated using Windows Integrated security or SQL Server
authentication.

It is generally recommended in all SQL Server documentation that you configure your database server to
authenticate logins using Windows Integrated authentication rather than SQL Server authentication. Client

programs running on a Windows-based computer or server, all of which run under the identity of a Windows user
account, do not have to specify a user name and password in the connection string when connecting to a
database server that requires Windows Integrated authentication. The Windows user who is running the client
program has already logged on to Windows, specifying a correct user name and password, and so on login to the
database server, the server receives an authentication token from the client computer identifying that user,
which it uses to grant the login. However, if the database server is configured to require SQL authentication, the
user name and password must always be specified in the connection string.

The security benefits of using Windows Integrated authentication on the database server are clear for a
Windows-based computer or server client. However, a client running on a Windows CE–or Windows Mobile–
powered device must always include a user name and password in the connection string, whether the database
server uses Windows or SQL authentication. You do not log on to a mobile device, so there is no way that a
Windows user token can be passed to the server for authentication.

If the server uses Windows authentication, set Integrated Security=true, and if it uses SQL authentication,
simply set Integrated Security=false. In both cases, specify the user name and password with the UID and
Password attributes.

Important

From a security point of view, you should not hard-code a user name and password
into a connection string, such as in the code example at the beginning of the
section titled "Setting the Connection String" earlier in this chapter. Instead, get
the credentials from the user as demonstrated in the SqlClientExample sample
application, or use one of the other techniques for storing credentials securely on
the device as described in Chapter 10.

Using Transactions in the .NET Compact Framework

Transactions are used to ensure that data remains in a consistent state. They can ensure that all updates (even
across different servers and organizations) are successful and, if a failure is detected, that all operations are
rolled back to their original state.

One of the limitations of the .NET Compact Framework is that no support is provided for managing a transaction
spanning databases or servers. However, the SqlConnection object does have a BeginTransaction method, which
returns a SqlTransaction object that you can use to implement a transaction that is not distributed but is based
on one SQL Server database.

You could take advantage of the SQL Server capability of coordinating transactions that span servers by writing a
stored procedure that uses a transaction with a database on a linked server. For more detail about using linked
servers, see SQL Server Books Online.

Overall, it is not recommended you use transactions from the user interface tier of a smart device application.
You can perform only transactions that are not distributed across databases anyway, and database performance
can be severely affected if you allow a client application to leave transactions uncommitted for any length of time
(for example, if you allowed the application to start a transaction or begin an edit and then permitted users to go
for lunch and not commit the changes until their return). The SQL Server host is the place to begin and commit
transactions, and if you use stored procedures, you can use Transact-SQL code to perform the transactions. The
following is an example of Transact-SQL structure for using a transaction:

CREATE PROC qUserTransaction
AS
BEGIN TRANSACTION
-- rest of the SQL here
IF @@ERROR=0 BEGIN
 COMMIT TRANSACTION
 RETURN 0 – success
END
ELSE BEGIN
 ROLLBACK TRANSACTION
 RETURN @@ERROR
END

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Synchronizing Data Using SQL Server 2005 Compact Edition

Remote Data Access

Many applications require you to load data from a central database, make changes or additions locally, and then
send your changes back to the central SQL Server database so that other users can see them. Remote Data
Access (RDA) is one technique you can use for loading from a central SQL Server database and sending updates
back to the server at a later time.

RDA makes use of the SQL Server CE Database Engine and the SQL Server CE Client Agent on the smart device
client. (See Figure 7-9.)

Figure 7-9. RDA and merge replication architecture

When data is required from the central SQL Server database, the SQL Server CE Client Agent makes a request to
the SQL Server CE Server Agent over HTTP. The server agent runs as an Internet Server API (ISAPI) extension
under IIS. It is implemented in the Sscesa30.dll file that is located on a Web site designated for the use of RDA.

There are three stages to setting up a server to support RDA and/or merge replication:

Install IIS on the server.1.

Install replication components for your SQL Server 2000 or SQL Server 2005 database.

If your database is SQL Server 2005, install replication support from the product installation

procedure.

If your database is SQL Server 2000, you can find installers for the replication components in the

drive:\Program Files\Microsoft Visual Studio 8\SmartDevices\ SDK\SQL Server\Mobile\v3.0 folder.

There are two choices in this folder:

sql2kensp4.msi Install this if the target database is SQL Server 2000 Service Pack 4 (SP4).

sql2kensp3a.msi Install this if the target database is SQL Server 2000 SP3.

2.

Install the SQL Server CE Server Tools. You configure the Web site using tools you install from the

SQL Server 2005 Compact Edition Server Tools package, which you can download from the Microsoft

MSDN Download Center at msdn.microsoft.com/downloads/details.aspx?FamilyID=4E45F676-

E69A-4F7F-A016-C1585ACF4310. Alternatively, if you have Visual Studio 2005 SP1, you can find the

installer, called Sqlce30setupen.msi, in the drive:\Program Files\Microsoft Visual Studio

8\SmartDevices\SDK\SQL Server\Mobile\v3.0 folder.

3.

You must install the SQL Server CE Server Tools on your Web server where IIS is located. You can configure your
server-side components as follows:

A single-server environment, with IIS and SQL Server running on the same computer

A multiple-server environment, with IIS and SQL Server running on two separate computers

These options are illustrated in Figure 7-10. A multiple-server environment is the most common scenario for
deployed applications. Multiple servers are typically used in production because they provide more flexibility and
can better meet complex security needs. If you are setting up SQL Server CE for the first time, consider setting
up a single-server environment. This lets you simplify the setup process by installing all the necessary server
software on one computer.

Figure 7-10. Server-side component configuration options to support RDA and merge replication

[View full size image]

Understanding RDA Pull and Push

RDA pull retrieves data from the SQL Server database using OLEDB and then transmits it back to the client using
HTTP. The SQL Server CE Server Agent manages communications on the server side, while on the client, the SQL
Server CE Client Agent receives the data stream and stores it in a table in a local SQL Server CE database file.
After data is in the local SQL Server CE database, it can be manipulated by the client smart device application.

You can return a pulled table from a local SQL Server CE database to update the central SQL Server database.
RDA calls this the push. The SQL Server CE Client Agent sends the data across HTTP to the SQL Server CE Server
Agent. The SQL Server CE Server Agent updates the SQL Server database using OLEDB and returns to the client
any errors that occur.

In addition to the push and pull of data, RDA provides the SubmitSQL method for executing SQL statements
directly on the server, as you will learn later.

You can use RDA with SQL Server 6.5 and later, and it is relatively simple to set up. The RDA communication
protocol is suited to wireless transports; the data is compressed and may be encrypted during transmission.
However, the process by which RDA merges data back into the central database is also simple and is not suitable
for complex data structures or multiuser applications where many users are trying to update the same data. Note
that you can't use RDA with a case-sensitive SQL Server database.

RDA Server Setup

The following shows you how to set up RDA for the sample application. Here is an outline of the tasks:

Install the SQL Server CE Server Agent on your Web server.

Use the SQL Server Connectivity Management tool to create a virtual directory (see Figure 7-12)
containing the SQL Server CE Server Agent dynamic-link library (DLL) (Sqlcesa30.dll).

Choose an authentication method for the new site (see the section titled "RDA Security Setup" that
follows and Figure 7-14).

Check that the identity authorized by IIS has a corresponding login to SQL Server and has permission to
use the relevant database and permissions to access and make any required changes to the database
objects.

Create a new database using SQL Server Management Studio, and run the MakeTrafficDatabase.sql script to
create the tables used in these samples—for more information, see the readme in the downloadable code for this
chapter on the companion Web site.

Installing the CE Server Agent

Locate and run the SQL Server Compact Edition Server Tools setup program on the server that you will use as the
Web server for RDA. This extracts files before presenting the Microsoft SQL Server CE Server Tools Setup Wizard.
Follow the wizard through the system configuration check, SQL Server selection page, and location of program
files to the Confirm Installation page. Click Install, and the wizard copies the server tools and the data access
components onto the server.

When installation is complete, click Start, point to All Programs, click SQL Server 2005 Compact Edition, and
then click Configure Web Synchronization Wizard to configure the SQL Server CE virtual directory in IIS (see
Figure 7-11).

Figure 7-11. Configure Web Synchronization Wizard

Click Next to start the wizard. On the next page, you can select the subscriber type; you must select SQL Server
2005 Compact Edition. On the following page, you can select the computer running IIS and choose to set up a
new virtual directory or use an existing one (see Figure 7-12).

Figure 7-12. Select server, virtual directory, and Web site

On the Virtual Directory Information page, enter TrafficRDA in the Alias box, and click Next. The wizard creates
the physical folder and asks if it should copy in the SQL Server CE Agent and register it; you must reply Yes.

On the Secure Communications page, you can specify whether a secure communications channel should be used.
You must obtain and install a server certificate if you want to use secure communications, and you can also
specify that client certificates be required for all clients. You can learn more about setting up secure
communications in Chapter 10.

The wizard then displays the authentication choices for RDA.

RDA Security Setup

Many of the problems you might encounter in practice when you use RDA will be caused by the security
mechanisms in the chain of applications that participate in RDA operations. There are four checkpoints that you
have to pass through between your smart device application and the data that you want out of the central SQL
Server database. These are as follows:

IIS authentication

SQL Server authentication

SQL Server database access

SQL Server object permissions

Refer to Figure 7-13, which shows these checkpoints as gates (they open only if you are successfully
authenticated and are authorized to have access). As well as the gates, you can see three stick people, who
represent the three identities you might be assuming as you pass each control.

Figure 7-13. RDA security checks

[View full size image]

Next, you are asked whether IIS should authenticate users (at the first gate). Figure 7-14 shows the Client
Authentication page in the SQL Server CE Configure Web Synchronization Wizard. Select Clients Will Be
Authenticated, and then click Next.

Figure 7-14. IIS authentication options

Then you are asked to choose the authentication control mode that IIS is to use (at the first gate). The sample
application uses the Integrated Windows authentication mechanism, so you should check the top option and
then click Next to proceed to the next stage of the security setup.

This set of authentication choices for IIS along with the option to specify a SQL Server login in the OLEDB
connection string used by the RDA methods (more detail later in the sections titled "Using RDA Pull" and
"Pushing Changes Back to the Remote Database") gives you four possible scenarios for the RDA security setup.
Table 7-2 details the identities and authentication checks that will be made for each of these scenarios. It should
help you check your security setup if you have problems connecting using one of the RDA methods.

Table 7-2. Identities and Authentication Checks in RDA

Authentication
Scheme IIS Authentication SQL Server Authentication

SQL Server
Permissions

IIS Anonymous, with
logon to SQL Server
authenticated by
Integrated Windows
authentication

You do not provide a
user name or password
but are instead logged
on to the Windows
server using the
credentials specified for
anonymous Internet
access (by default, the
IUSR_ComputerName
local account is used,
although you can
configure a custom
Windows user account to
be used).

You are logged in to SQL
Server as the Windows user
account configured for
anonymous Internet access
(by default, ComputerName
\IUSR_ComputerName).

You need to grant
database access and
relevant object
permissions to the
account configured for
anonymous Internet
access.

IIS Basic, with logon to
SQL Server
authenticated by
Integrated Windows
authentication

You must provide a
Windows user name and
password in the
InternetLogin and
InternetPassword
properties of the
SqlCeRemoteDataAccess
instance. The credentials
are passed to IIS in
plain text. You should
use Secure Sockets
Layer to create a Secure
HTTP (HTTPS)
connection when using
Basic authentication so
that the credentials are
transferred over an
encrypted channel.

You are logged in to SQL
Server as the Windows user
identity used to authenticate
to IIS.

You need to grant
database access and
relevant object
permissions to the
Windows user identity
used to authenticate to
IIS, or to the Windows
group to which the user
account belongs.

IIS Integrated Windows,
with logon to SQL Server
authenticated by
Integrated Windows
authentication

You must provide a
Windows user name and
password in the
InternetLogin and
InternetPassword
properties of the
SqlCeRemoteDataAccess
instance, and these
credentials are passed in
an encrypted form to
IIS. Note that you
cannot use this form of
authentication through a
proxy server.

As above. As above.

IIS Anonymous, Basic,
or Integrated Windows,
but with logon to the
database server
authenticated using SQL
Server authentication

You must provide
credentials for IIS Basic
and IIS Integrated
Windows as described
above.

You are logged in to SQL
Server using the user
ID/password you specify in
the connection string you
supply to the
SqlCeRemoteDataAccess.Pull
and .Push methods.

You need to grant
database access and
relevant object
permissions to the SQL
Server user specified in
the connection string.

The next step in the security setup for the sample application is to identify the Windows user accounts (or
groups) that you will use for authenticating to IIS so that the wizard can grant appropriate NTFS file system
access permissions to the virtual directory. Because the sample application uses Integrated authentication, you
should enter the domain and user name of a test user, or the domain and group name of a test user, as shown in
Figure 7-15.

Figure 7-15. Identifying Windows user accounts that are used for IIS authentication so as to

grant them NTFS access permissions

Leave the option The Virtual Directory Will Be Used For SQL Server Merge Replication clear, and click Next again.
On the last page, click Finish to complete this part of the security setup.

To complete the security setup in the database, run the SQL Server Enterprise Manager and locate the sample
database called Traffic. Make sure that the domain user account you have configured for use for RDA or its
Windows group is added as logins to the server and has permission to access the Traffic sample database. Check
that the account also has permission to read and update the Cars and Obs tables in the Traffic database. (For
more information about setting permissions in SQL Server, see SQL Server Books Online.)

Tip

To check that you have configured the virtual directory correctly, and that your
device has network connectivity to the SQL Server CE Agent, start Pocket Internet
Explorer on the device, and enter the URL to the virtual directory. If you have
connectivity, you will see a string returned from the server agent:

Pulling Data into a Local Database

This section extends the sample application of a parking management system. You will see how to load the initial
data from a central SQL Server database using RDA.

Using RDA Pull

You follow several steps to use RDA to pull data from a SQL Server database onto a smart device; they are as
follows:

Use the SQL Server CE Configure Web Synchronization Wizard to create a virtual directory on your Web
server that is configured correctly for RDA.

Check the security path from the Web server to the SQL Server database login.

Create the target SQL Server CE database on the device using the SqlCeEngine object.

If the target database already exists, connect using a SqlCeConnection object, and use a SqlCeCommand
object to delete any tables that are part of the pull.

Transfer the data using the Pull method of a SqlCeRemoteDataAccess object.

You have already done the first two steps in the preceding section. Now you need to do the housekeeping tasks
of creating a local database and deleting any existing tables. For each table that you use to store the results of
an RDA Pull, you also need a separate table to store details of any errors that are encountered (you specify the
name of the errors table in the call to the Pull method, as explained later), so you must delete both these tables.
The sample shows you how to do this in more detail, but in outline, you must use T-SQL Data Definition
Language (DDL) to remove any existing tables, for example:

//Clear out old table.

using (SqlCeConnection cn =

 new SqlCeConnection(@"Data Source=\My Documents\TrafficRDA.sdf"))

{

 cn.Open();

 try

 {

 try

 {

 using (SqlCeCommand cmd =

 new SqlCeCommand("DROP TABLE Cars", cn))

 {

 cmd.ExecuteNonQuery();

 }

 }

 catch (SqlCeException sqlCeEx)

 {

 if (sqlCeEx.HResult != -2147217865) // Table does not exist

 DisplaySQLCEErrors(sqlCeEx);

 }

 }

 finally

 {

 cn.Close();

 }

}

Warning

There is a bug in SQL Server 2005 Compact Edition that makes it difficult to delete
an errors table using code similar to that shown in the preceding code example or
even if you try to drop the table using Query Analyzer on the device. You may get
an exception with the error "DDL Operations are restricted on this Table," and the
DROP operation fails. Subsequent calls to Pull will also fail if the table name you
specify for the errors table already exists.

There are two workarounds. You can delete the whole database rather than try to
delete individual tables, and then create a new database before calling Pull.
Alternatively, make sure your program executable runs from the same folder as
where the SQL CE DLLs are installed, by default the Windows folder. The sample
application that you can download for this chapter uses the latter approach.

You achieve the last step of pulling the data from SQL Server by creating a SqlCeRemoteDataAccess object and
setting some properties, before calling its Pull method. Table 7-3 examines the properties needed.

Table 7-3. Properties of the SqlCeRemoteDataAccess Object

Property Description Comment

CompressionLevel Specifies the amount of
compression that will be used by
the compression routines during
Push and Pull operations.

A value of 0 turns off all
compression. The maximum is 6.
The default value is 1, which
uses the lowest amount of
processor time while still
providing some compression.

ConnectionManager On Windows Mobile–powered
devices, true enables use of the
Connection Manager application
programming interface (API) to
establish the connection to the
server (recommended).

If the ConnectionManager
property is set to true, the
Connection Manager will always
be used to establish a
connection. If proxy settings are
required, the Connection
Manager proxy settings will be
used unless the
InternetProxyServer,
InternetProxyLogin, or
InternetProxyPassword property
is set.

ConnectionRetryTimeout Allows you to specify an amount
of time that the SQL CE client
will attempt to recover from a
failed connection.

This property applies only to
situations when the initial
connection has succeeded and
then the connection has been
destroyed. If recovery occurs
during the specified duration, the
operation (Push, Pull, or
SubmitSql) continues.

InternetURL The URL string to the SQL CE
Server Agent DLL.

You must include the name of
the DLL (Sqlcesa30.dll).

InternetLogin The IIS login name. The default is no login string. You
do not need to give a value if you
are using Anonymous
authentication.

InternetPassword The IIS password string. There is no need to give a
password for Anonymous
authentication.

InternetProxyServer Proxy server name and port. Both the server name (or IP
address) and port must be given
using the format
ProxyServerName:Port. You do
not set this property if you are
not using a proxy server.

InternetProxyLogin Login for the proxy server. You need to set this property if
you are using Basic or Integrated
authentication on the proxy
server. You do not set this
property if you are not using a
proxy server.

InternetProxyPassword Password for the proxy server. You need to set this property if
you are using Basic or Integrated
authentication on the proxy
server. You do not set this
property if you are not using a
proxy server.

LocalConnectionString The OLEDB connection string for
SQL Server CE.

The OLEDB connection string for
logging onto SQL Server CE on
the smart device.

Property Description Comment

The remaining details of the route from the central SQL Server database to the SQL Server CE database are
provided by the arguments of the Pull method. Table 7-4 gives guidance on their use.

Table 7-4. Arguments of the Pull Method

Argument Description Comment

LocalTableName The name of a SQL Server CE
table that will receive the
extracted SQL Server records.

You need to drop the table if it
already exists.

SqlSelectString SQL that specifies what columns
and rows of SQL Server data to
transfer.

This can contain any valid
Transact-SQL statement or
function. This SQL is executed
against the SQL Server database;
you must check that you have all
the permissions needed.

OLEDBConnection String The OLDB connection string for
the SQL Server database.

This is the OLEDB connection
string for the SQL Server CE
Server Agent to use when it
connects to the central SQL
Server database.

RDATrackingOption Indicates whether SQL Server CE
should track changes made to
the pulled table (to allow you to
send them back to the SQL
Server).

Options are TrackingOn,
TrackingOff,
TrackingWithIndexesOn, and
TrackingWithIndexesOff. See
Tracking Options below.

ErrorTableName Name of a table in the local SQL
Server CE database to be used
for errors.

Each local table you create must
use a separate local error table.
If you try to reuse an error table
name, the pull will fail.

Here is a sample function to achieve an RDA pull:

private void RDAPull()

{

 // First, ensure you have an empty local SQL CE database.

 if (System.IO.File.Exists(@"\My Documents\TrafficRDA.sdf"))

 {

 System.IO.File.Delete(@"\My Documents\TrafficRDA.sdf");

 }

 // Create new database.

 SqlCeEngine eng =

 new SqlCeEngine(@"Data Source=\My Documents\TrafficRDA.sdf");

 eng.CreateDatabase();

 // Perform the pull.

 using (SqlCeRemoteDataAccess rda = new SqlCeRemoteDataAccess())

 {

 string sCon = @"Provider=SQLOLEDB;Data Source=MYSQLSERVER;"

 + @"Initial Catalog=Traffic;"

 + @"integrated security=SSPI;Persist Security Info=False";

 rda.InternetUrl = @"http://MYSERVER/TrafficRDA/sqlcesa30.dll";

 rda.LocalConnectionString =

 @"Data Source=\My Documents\TrafficRDA.sdf";

 rda.InternetLogin = @"MyDomain\RDAUser";

 rda.InternetPassword = "P@ssw0rd";

 rda.CompressionLevel = 10;

 try

 {

 rda.Pull("Cars", "SELECT CarID,Reg,Location FROM Cars",

 sCon, RdaTrackOption.TrackingOn, "rdaCarErrors");

 }

 catch (SqlCeException sqlCeEx)

 {

 DisplaySQLCEErrors(sqlCeEx);

 }

 try

 {
 rda.Pull("Obs",

 "SELECT ObsID,CarID,ObsDateTime,ObsNote FROM Obs",

 sCon, RdaTrackOption.TrackingOn, "rdaObsErrors");

 }

 catch (SqlCeException sqlCeEx)

 {

 DisplaySQLCEErrors(sqlCeEx);

 }

 }

 MessageBox.Show("RDA Pull Done!");

}

Caution

For simplicity, the preceding code example shows the InternetLogin and
InternetPassword values hard-coded. Do not do this in your own applications
because an attacker can decompile application code and discover these values,
compromising your security. Instead, store these values securely as described in
Chapter 10, or use a Windows Form to ask the user to enter credentials at run time,
which is the technique used in the first sample in this chapter.

You can verify the operation of your code by using the Query Analyzer tool on the smart device. By connecting to
the new database after executing the RDA pull and examining the Objects tab, you can see both the pulled
tables and their error tables (see Figure 7-16).

Figure 7-16. RDA pulled tables and error tables

Tracking Options

There are four TrackingOption values to choose from when calling the Pull method of the SqlCeRemoteDataAccess
object. Your choice is important because it affects whether you can subsequently call the Push method and the
behavior of the pulled table. Table 7-5 lists the effects of each value.

Table 7-5. RdaTrackOption Values

Value Description

TrackingOn SQL Server CE will keep track of every record that is
inserted, updated, or deleted. You will be able to push
these changes back to the central SQL Server.

You must select an updatable record set containing the
primary key of the source table. In practice, this restricts
the selection to a single table or a SQL Server updatable
view. If you specify the name of an errors table, push
errors will be logged in that table in the database on the
device.

TrackingOff No tracking of changes is done, and you will not be able to
call the Push method.

TrackingWithIndexesOn Same as TrackingOn, but additionally copies the indexes
during the pull. For example, this may be useful if you
have unique constraints on the table that are implemented
by an index.

TrackingOffWithIndexes Same as TrackingOff, but the indexes are copied during the
pull.

Making Changes to a Pulled Table

Although a SqlCeCommand object generally gives you a wide range of DDL SQL commands, if you are trying to
change a local table that has been pulled using RDA, there are some restrictions. You can drop a table that has
been created in an RDA pull and add or drop indexes, default values, and foreign key constraints. You are not
allowed to rename a table that has been created in an RDA pull; drop the primary key; add, drop, or rename
columns; or alter the data type of a column.

Pushing Changes Back to the Remote Database

You can write code to update pulled tables in the local database in the same way as in any other table (subject to
the restrictions described in the preceding section). When you are ready to update the central SQL Server
database with additions, changes, and deletions you have made, you call the Push method of the
SqlCeRemoteDataAccess object.

Optimistic Concurrency

RDA uses optimistic concurrency control on the central SQL Server database. That is, when records are pulled,
they are not locked on the central SQL Server database, and when you push changes back, the SQL Server CE
Server Agent overwrites any changes that might have been made by another user. There are no built-in features
to allow you to detect that two or more clients have updated the same records in a table. This means that the
RDA Push method is suited to applications for which this kind of lost update is acceptable or for which you can
implement some kind of mechanism to ensure that different clients work on a unique selection of records (for
example, modifying the SELECT statement that you pass to the RDA Pull method so that each client pulls a
unique range of records).

Using the Push Method

You set the same set of properties on the SqlCeRemoteDataAccess object as mentioned in Table 7-3 for the Pull,
so they are not repeated here. The Push method takes two or optionally three arguments, as described in Table
7-6.

Table 7-6. Arguments of the Push Method

Argument Description Comment

LocalTableName The SQL Server CE table that will
be the source of the changes

The name of the local table that
contains the tracked changes.

OLEDBConnection String The OLDB connection string for
the SQL Server database

This is the OLEDB connection
string for the SQL Server CE
Server Agent to use when it
connects to the SQL Server
database.

BatchOption Optional argument:
RdaBatchingOn or
RdaBatchingOff

This argument specifies whether
SQL Server CE should apply each
update in a separate transaction
(RdaBatchingOff) or all together
in a single transaction
(RdaBatchingOn).

As with the Pull method, you must check that the authentication method you are using has access through to the
table on the SQL Server database and that it also has authorization to change the data. Here is a sample function
to perform an RDA Push:

private void RDAPush()

{

 using (SqlCeRemoteDataAccess rda = new SqlCeRemoteDataAccess())

 {

 string sCon = @"Provider=SQLOLEDB;Data Source=MYSQLSERVER;"

 + @"Initial Catalog=Traffic;"

 + @"integrated security=SSPI;Persist Security Info=False";

 rda.InternetUrl = @"http://MYSERVER/TrafficRDA/sqlcesa30.dll";

 rda.LocalConnectionString =

 @"Data Source=\My Documents\TrafficRDA.sdf";

 rda.InternetLogin = @"MyDomain\RDAUser";

 rda.InternetPassword = "P@ssw0rd";

 try

 {

 rda.Push("Cars", sCon);

 }

 catch (SqlCeException sqlCeEx)

 {

 DisplaySQLCEErrors(sqlCeEx);

 }

 }

MessageBox.Show("RDA Push Done!");

}

Caution

For simplicity, the preceding code example shows the InternetLogin and
InternetPassword values hard-coded. Do not do this in your own applications
because an attacker can decompile application code and discover these values,
compromising your security. Instead, store these values securely as described in
Chapter 10, or use a Windows Form to ask the user to enter credentials at run time,
which is the technique used in the first sample in this chapter.

Examining the RDA Errors Table

If an ErrorTableName argument was given during the Pull of the LocalTableName that is being pushed, if any
errors are detected during the Push, they will be logged in the ErrorTableName table in the SQL Server CE
database. You can examine this table by retrieving its records using standard database access techniques. See
the upcoming section titled "Troubleshooting RDA" for more information about some of the errors you can
encounter.

Running Commands on the Remote Database

In addition to pulling Push and Pull, the SqlCeRemoteDataAccess object has a SubmitSQL method that you can
use to run SQL statements on the central SQL Server database. The SubmitSQL method requires you to set up
the same properties to specify the URL of the SQL Server CE agent and user credentials as for the Pull method,
and you must have the correct authorization to run the SQL on the central SQL Server database. The SubmitSQL
method takes just two arguments, the SQL string to execute and the OLEDB connection string the SQL Server CE
agent will use to connect to the SQL Server database.

The sample code here sets an archive flag on all the cars in the central database, used in the sample application
at the end of the day to close off all observations:

private void SubmitSQLRDA()

{

 using (SqlCeRemoteDataAccess rda = new SqlCeRemoteDataAccess())

 {

 rda.InternetUrl = @"http://MYSERVER/TrafficRDA/sqlcesa30.dll";

 rda.LocalConnectionString =

 @"Data Source=\My Documents\TrafficRDA.sdf";

 rda.InternetLogin = @"MyDomain\RDAUser";

 rda.InternetPassword = "P@ssw0rd";

 try

 {
 string sCon = @"Provider=SQLOLEDB;Data Source=MYSQLSERVER;"

 + @"Initial Catalog=Traffic;"

 + @"integrated security=SSPI;Persist Security Info=False";

 rda.SubmitSql("UPDATE Cars SET Archive = 1", sCon);

 }

 catch (SqlCeException ex)

 {

 DisplaySQLCEErrors(ex);

 }

 }

}

Caution

The same advice applies to this sample about not using hard-coded credentials as
was given for the RDA Pull and Push samples.

However, there is another security point to make about the SubmitSql method. You
must take care with how you use this if you use user input to help build up the
command. For example, think about what could happen if you build up an SQL
statement to send to the SubmitSql method using code such as "UPDATE Cars SET
Color ='" + TextBox1.Text + "'", and you are expecting the user to enter values
such as Red, Blue, or Yellow.

What if the user enters: "Red'; DROP TABLE Cars --"? Because SQL Server is quite
happy to execute multiple statements you pass to it in a single string, it will update
the Cars table and then delete it!

This is an example of an SQL injection attack. You must always validate user input
carefully and use regular expressions or some other technique to ensure that the
input is in the format you intended. Remember the security maxim: Never trust
user input.

Troubleshooting RDA

As described in the introduction to this section on programming RDA and in Figure 7-9, there are a number of
layers making up the RDA architecture. When you are developing a system using RDA, a problem might occur in
any one of the layers. Table 7-7 lists some of the problems you might encounter if you are developing
applications using RDA, and it helps you track down their sources and reach resolutions.

Table 7-7. Potential Problems and Resolutions for Using RDA

Problem Reason Resolution

Cannot Pull Table
(Native Error reports 0
or 4060)

You will get a pull error if you
have not set up the security
access correctly.

Check your security setup. See
the section titled "RDA Security
Setup" earlier in this chapter for
guidance.

Cannot Push Table with
no Primary Key (Native
Error reports 29010)

You cannot update a central SQL
Server table that has no primary
key (although you will be able to
pull it successfully).

Alter the table on the central SQL
Server database to have a
primary key.

Cannot Push Table with
Identity Column (Native
Error reports 28537)

The SQL Server CE Client Agent
receives the error that it is
unable to establish an identity
range for any new records you
add to a table that contains an
identity column.

You will need to consider using
merge replication if your
application has to push identity
columns back to the central SQL
Server database. Consider a
workaround if you want to stick
to RDA. (See the SQLCE_RDA
sample in the downloadable code
on the companion Web site for
one solution, where the
application assigns unique record
ID values when you create a new
record, instead of relying on an
identity column to assign these
values.)

Problem Reason Resolution

Cannot drop Errors
tables, either
programmatically or in
Query Analyzer

There is a restriction in SQL
Server CE that means you cannot
delete errors tables unless the
application that created them is
in the same folder as the SQL
Server CE DLLs.

Either delete the whole database
and create a new empty one
before calling Pull, or deploy your
application to the same folder as
the SQL Server CE DLLs (by
default, Windows).

For a full list of SQL Server CE error messages and numbers, search the SQL Server CE Books Online for "SQL
Server CE Errors."

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Replicating Data Using SQL Server Merge Replication

This section looks in detail at the alternative to RDA: SQL Server CE Merge Replication (referred to as merge
replication from here). Merge replication is supported in SQL Server 2000 and later. Although merge replication is
more powerful and simpler to program than RDA is, you will find that it is more complex to set up, especially the
security configuration. We start by taking you through the main points.

SQL Server CE Merge Replication Architecture

Although SQL Server CE Merge Replication is similar to SQL Server 2000 and SQL Server 2005 Merge Replication,
it is not identical. As with all forms of SQL Server replication, three databases are involved:

Publisher

Distributor

Subscriber

The publisher is a database that makes data available for replication, the distributor is a database that contains
the data and metadata required to manage the replication, and the subscriber is a database that receives the
replicated data. In the simplest replication configuration, the publisher and the distributor reside on the same
server. It is beyond the scope of this chapter to consider multiple-server configurations for SQL Server
replication. Refer to SQL Server Books Online. The main difference between full SQL Server replication and SQL
Server CE Merge Replication is that IIS sits between the client (and the subscriber database) and the other
databases. This allows the replication data and communications to be sent over HTTP, as shown in Figure 7-17.

Figure 7-17. SQL Server CE Merge Replication architecture

Like RDA, SQL Server CE Merge Replication makes use of the SQL Server CE Database Engine and the SQL Server
CE Client Agent on the smart device client. When data is first required (called initialization), the application calls
a method that invokes the SQL Server CE Client Agent, which in turn calls the SQL Server CE Server Agent over
HTTP. (This is the same server agent that is used for RDA.) The server agent invokes the SQL Server CE
replication provider, and an initial record set (called a snapshot) is selected from the central SQL Server database
and returned by HTTP to the client agent. The client agent is then able to build the local SQL Server CE database
(called the subscription database) on the smart device.

After the subscription database has been built, you can use the SQLServerCe objects to manipulate its structure
and data locally. The SQL Server CE Database Engine tracks all the changes you make using a small amount of
tracking information for each record.

Periodically, your application is required to send its changes to the central SQL Server database and to receive
any changes made centrally or by other remote users. This is the process of synchronization, and you will see
later that it can be initiated from the client application using the SQLCeReplication merge replication object. The
client agent calls the server agent over HTTP, sending details of the changes tracked since the last
synchronization (or since initialization, if this is the first synchronization). The server agent then writes an input
message (.in) file that is passed to the SQL Server CE replication provider for loading into the central SQL Server
database. The SQL Server reconciler merges the new input data into the central database and then informs the
SQL Server CE replication provider about changes made at the publisher that must be applied to the subscription
database. The SQL Server CE replication provider writes an output message (.out) file that is passed back to the
server agent and then on to the client agent. The client agent is finally able to apply the changes to the
subscription database on the smart device. It is interesting to note that the output message file is written to the
client and processed in blocks so as to avoid overloading the smart device with large quantities of changes all at
once.

Setting Up Merge Replication

To set up merge replication, start by installing the server-side software to support replication, both in your SQL
Server database and on the IIS server where the SQL Server CE agent will run. Refer to the opening paragraphs
of the section titled "Synchronizing Data Using SQL Server 2005 Compact Edition Remote Data Access" for
information about setting up the server-side software.

Some of the steps of the merge replication setup follow those for the RDA setup. However, there are extra steps
both in SQL Server and in the creation and securing of the replication snapshot folder. The main steps are as
follows:

Set up a default replication snapshot folder for SQL Server.

Create a publication of a SQL Server 2000 or SQL Server 2005 database.

Install the SQL Server CE Server Agent on your Web server.

Use the SQL Server 2005 Compact Edition Configure Web Synchronization Wizard to create a virtual
directory containing the SQL Server CE Server Agent DLL (Sqlcesa30.dll).

Choose an authentication method for the new site.

Secure the virtual directory using NTFS.

Share and secure the Snapshot folder using NTFS.

Check that the identity that IIS authorizes has a corresponding login to SQL Server and has permission to
subscribe to the publication.

Setting Up the Publication

You need administrator credentials to SQL Server for this setup. If you have not already used the SQL Server for
replication, you first must start SQL Server 2005 Management Studio and run the Configure Distribution Wizard.
(Skip this section and go straight to the section titled "Creating a New Publication" if you have already configured
distribution on this SQL Server.)

Configuring SQL Server for Distribution

Start the Configure Distribution Wizard by right-clicking the Replication folder and then clicking Configure
Distribution. The Welcome page for this wizard explains that you have three options:

Configure your server to be a Distributor that can be used by other Publishers

Configure your server to be a Publisher that acts as its own Distributor

Configure your server to be a Publisher that uses another server as its Distributor

You make your choice on the next page. If you are configuring a SQL Server for testing purposes, you should
configure your SQL Server to perform both Publisher and Distributor roles by selecting the option <server> Will
Act As Its Own Distributor, and then click Next. The next page shows the location of the Snapshot folder (this a
folder where the SQL Server Snapshot Agent stores all relevant information about a publication's data). By
default, the wizard creates the Snapshot folder in a folder in the <drive>:\Program Files\Microsoft SQL Server
directory tree, but do not accept this. You are advised to create a network share and enter the path here (as
shown in Figure 7-18). Remember its location—you will need it later when you set up the merge replication Web
server.

Figure 7-18. Setting the Snapshot share in the SQL Server Configure Distribution Wizard

Note

The Snapshot folder is simply a directory that you have designated as a share;
agents that read from and write to this folder must have sufficient permissions to
access it. See the section titled "Merge Replication Security" later in this chapter for
details on setting appropriate NTFS permissions on the snapshot share.

Click Next, and on the Distribution Database page, accept the defaults. Click Next to move to the Publishers
page, where you can configure which SQL Servers that are configured as publishers may use this server as a
distributor. The server you are configuring is already shown in the list (because it is acting as both publisher and
distributor), and so click Next, and then click Finish.

Creating a New Publication

Run SQL Server 2005 Management Studio, and right-click the Replication – Local Publications folder. Click New
Publication to run the New Publication Wizard. Click Next, select traffic Database For Replication, and then click
Next. On the Select Publication Type page, click the bottom option for Merge Replication, and then click Next. On
the Specify Subscriber Types page, select SQL Server 2005 Compact Edition and optionally select any other of
the subscriber types you want to support with this publication, and then click Next.

On the Articles page, shown in Figure 7-19, select both the Cars and the Obs tables, and then click Next. The
next page may display Article Issues, which is advice on changes the wizard will make to the selected tables to
support merge replication. In the case of the tables you have selected, it warns that it will add a Uniqueidentifier
column to each table. Read the advice, and then click Next.

Figure 7-19. SQL Server Create Publication Wizard

On the next page, you can define filters, which is a useful way of limiting the number of rows of data that you
send to each subscriber. Effectively, you use this page to define the WHERE clause in a SELECT
<publishedColumns> FROM <table> WHERE... statement. For example, you can create a filter such that all
subscribers receive the same subset of data: WHERE Manufacturer='Contoso', or a filter that is parameterized so
that each subscriber passes a parameter that is used to filter the rows it receives: WHERE Salesman =
SUSER_SNAME(). You can also declare linked filters, where you filter table B based on a foreign key relationship
to table A, which is better than using a single filter on a table based on joins and subqueries.

In the current example, do not define any filters, and click Next. On the next page, specify when to run the
Snapshot Agent. Select Create A Snapshot Immediately, and also accept the default schedule for running the
Snapshot Agent in the future.

Next, you must configure security for the Snapshot Agent. Click the Security Settings button, and then enter the
user name and password of a Windows account under which the Snapshot Agent will run. This account must at
least have the db_owner role in the distribution database and must also have Write NTFS permissions on the
snapshot share. In the lower pane of the Security Settings page, select By Impersonating The Process Account
(Recommended), or enter the name and password for a SQL Server login (that is, a login you have set up in SQL
Server for SQL authentication). The account must at least have the db_owner role in the publication database.

Give the publication a name (this sample uses TrafficMR), and click Finish to complete the setup. The wizard
then creates the subscription and, if you requested it to do so, runs the Snapshot Agent immediately.

Tip

If the Snapshot Agent fails to run successfully, it may be because the SQL Server
Agent is not running. Open the SQL Server 2005 Configuration Manager to view the
Server Agent status, and start it if necessary. Then right-click your publication in
SQL Server 2005 Management Studio, and click View Snapshot Agent Status to
open a window where you can start or monitor the agent.

You can modify any of these configuration details later by selecting your publication under the Local Publications
folder in SQL Server Management Studio and clicking Properties.

Setting Up the Web Server

Start the setup for the merge replication sample by running the SQL Server CE Web Synchronization Wizard that

was installed on your Web server when you set up RDA for the preceding sample. You can also start this tool
from SQL Server 2005 Management Studio by right-clicking your publication and clicking Configure Web
Synchronization.

Run through the Web Configuration Wizard exactly as you did for RDA when you created the TrafficRDA virtual
directory, as described earlier in the section titled "RDA Server Setup." Create a new virtual directory called
TrafficMR, and as before, select Integrated Authentication on the Authenticated Access page. As before, enter the
domain\user name or domain\group to configure NTFS access to the virtual directory. One important difference
from RDA, though, is you must select the box for SQL Server merge replication, as shown in Figure 7-20.

Figure 7-20. Merge replication option selected when configuring NTFS security

The final step is to secure the merge replication user for access to the Snapshot folder. Enter the network
location of the Snapshot folder you created earlier in the section titled "Configuring SQL Server for Distribution,"
click Next, and then click Finish to complete the setup. The Web server part of the setup for merge replication is
now complete.

Merge Replication Security

NTFS file security is used to control access to the two folders that merge replication uses: the Web site virtual
directory and the Snapshot folder. This is in addition to the user authentication provided by IIS and SQL Server.
SQL Server also controls access at a database level and, through the Publication Access List (PAL), it controls
access to the publication. There is an additional optional level of security in SQL Server called the Check
Permissions. The Check Permissions provide an enhanced level of control by ensuring that the SQL login that the
SQL Server CE Server Agent uses has permissions to perform insert, update, and delete operations on the data.

Figure 7-21 shows the general security scheme using the gates to represent security checks and the stick figures
to represent the identities that you might assume at the various stages.

Figure 7-21. Merge replication security

[View full size image]

With RDA, you only had to worry about how to authenticate to IIS, and then whether you logged in to SQL
Server using the Windows account credentials or using SQL Server authentication; these options were described
in Table 7-2. With merge replication, there are many more gates to pass through. As with RDA, you have three
choices for IIS authentication: Anonymous, Basic, or Integrated Windows, which you select when you use the
SQL Server CE Web Synchronization Wizard to configure the virtual directory (as described in the preceding
section). If you are using Basic or Integrated Windows authentication, you specify the user name and password
to supply to IIS by setting the InternetLogin and InternetPassword properties of the SqlCeReplication instance.

If you successfully pass IIS authentication, the SQL Server CE Server Agent must connect to the Distributor and
Publisher databases, and for that you use some additional properties of SqlCeReplication. The
DistributorSecurityMode determines how the login to the SQL Server Distributor database is authenticated and
may be set to either SecurityType.DBAuthentication (meaning that SQL Server authentication is used to connect
to the Distributor database) or SecurityType.NTAuthentication (Windows Authentication is used, and the default).
If SecurityType.NTAuthentication is selected, the agent logs on to the Distributor database using the Windows
account that you used to log on to IIS. If SecurityType.DBAuthentication is selected, you must supply the
DistributorLogin and DistributorPassword properties to supply the SQL Server authentication user name and
password. The PublisherSecurityMode property sets the authentication mode for the Publisher database, and if it
is set to SecurityType.DBAuthentication, you must supply the PublisherLogin and PublisherPassword.

Table 7-8 shows scenarios in which SQL Server is configured as both publisher and distributor and identifies the
identities and authentication checks involved.

Table 7-8. Authentication in Merge Replication

IIS Authentication SQL Server Authentication SQL Server Permissions

IIS Anonymous, with PublisherMode
and DistributorMode set to
SecurityType.NTAuthentication
(Integrated Windows
authentication)

You do not provide a user name or
password but are instead logged on
to the Windows server using the
credentials specified for anonymous
Internet access. (By default, the
IUSR_ComputerName local account
is used, although you can configure
a custom Windows user account to
be used.)

You need to grant database
access and add to the PAL the
computer \IUSR_machinename
login.

IIS Authentication SQL Server Authentication SQL Server Permissions

Basic authentication, with
PublisherMode and DistributorMode
set to
SecurityType.NTAuthentication
(Integrated Windows
authentication)

You must provide a Windows user
name and password in the
InternetLogin and InternetPassword
properties of the SqlCeReplication
instance. The credentials are passed
to the IIS server in plain text. You
should use Secure Sockets Layer to
create an HTTPS connection when
using Basic authentication so that
the credentials are transferred over
an encrypted channel.

You need to grant database
access and add to the PAL the
login specified by the Internet
login, or to a Windows NT group
to which the Internet login
belongs.

Integrated Windows, with
PublisherMode and DistributorMode
set to
SecurityType.NTAuthentication
(Integrated Windows
authentication)

You must provide a Windows user
name and password in the
InternetLogin and InternetPassword
properties of the SqlCeReplication
instance, and these credentials are
passed in an encrypted form to IIS.
Note that you cannot use this form
of authentication through a proxy
server.

As above.

Anonymous, Basic, or Integrated
Windows, with PublisherMode and
DistributorMode set to
SecurityType.DBAuthentication and
SQL Server user ID/password
specified in the
PublisherLogin/PublisherPassword
and
DistributerLogin/DistributorPassword
properties.

You must provide credentials for IIS
Basic and IIS Integrated Windows
as described above.

You are logged in to SQL Server
using the user ID/password
specified in the
PublisherLogin/PublisherPassword
and
DistributerLogin/DistributorPassword
properties.

You need to grant database
access and add to the PAL the
SQL Server user specified in the
PublisherLogin or
DistributerLogin property.

For merge replication, in addition to the IIS and SQL Server setup, you will need to set up NTFS permissions.
Note that when you run the SQL Server CE Web Synchronization Wizard and the SQL Server 2005 Management
Studio New Subscription Wizard, the required NTFS permissions are correctly set for you. However, note the
following:

Allow SQL Server and its agents Full Control to create the initial snapshot files and folder structure in the
Snapshot folder.

Allow the SQL Server CE Agent to Read the snapshot files in the Snapshot folder.

Allow the SQL Server CE Agent to Read and Write the message files in the virtual directory.

Allow SQL Server and its agents Full Control over the message files in the virtual directory.

Allow the user to Execute the SQL Server CE Agent (Sscesa.dll).

Table 7-9 expands the information in the preceding list for each of the four authentication scenarios and includes
additional file security requirements to give a full list of the NTFS permissions you need to set up.

Table 7-9. NTFS Permissions for Merge Replication

IIS Authentication Mode NTFS Permissions

SQL Server CE Server Agent

Anonymous; you do not give a user
name/password.

For the computer \IUSR_machinename login,
you need to grant Read and Write access to
the virtual directory, and Read access to the
Snapshot folder.

Basic; you must give a user name/password. For the login specified by the Internet login or
to a Windows NT Group to which the Internet
login belongs, you need to grant Read and
Write access to the virtual directory, and Read
access to the Snapshot folder.

Integrated Windows; you must give a user
name/password.

As above.

Anonymous, Basic, or Integrated Windows,
with SQL Server user ID/password specified in
the PublisherLogin/PublisherPassword or
DistributorLogin/DistributorPassword
properties.

Apply NTFS permissions as per the previous
scenario that matches the IIS authentication
mode chosen.

SQL Server Replication Agent

SQL Server agents The user account under which SQL Server and
its agents run must be given Full Control to
the virtual directory and to the Snapshot
folder.

IIS Authentication Mode NTFS Permissions

The Snapshot folder is simply a directory that you have designated as a share; agents that read from and write
to this folder must have sufficient permissions to access it, as described in Table 7-9. You can test that the
replication agent will be able to connect to the Snapshot folder by logging on under the account that the agent
will run under and then attempting to access the Snapshot folder.

Programming Merge Replication

With the server setup completed, you are ready to program SQL Server CE Merge Replication. You can find the
UsingSqlCeMRSample application in the sample code for this chapter on the companion Web site. This sample
application contains the code shown in the rest of this section and uses the TrafficMR publication and virtual
directory you just configured in the section titled "Setting Up Merge Replication."

If you have downloaded and opened the sample application, locate the Merge function in the code for the
FormMR form. You can see that the first step for programming merge replication is to create an instance of the
SqlCeReplication object, which is part of SqlServerCe.Table 7-10 lists the methods available on the
SqlCeReplication object and outlines their use.

Table 7-10. Methods of the SqlCeReplication Object

Method Description

SqlCeReplication constructor We used the second overload of this in the example: This
takes arguments for all the properties that are required for
synchronization.

AddSubscription Used to create a new subscription to the published
database; optionally can also create the local SQL Server
CE database. You must call the Synchronize method to
actually retrieve the data.

DropSubscription Used to drop the subscription to the published database,
and optionally to delete the local SQL Server CE database
file.

ReinitializeSubscription Used to mark a subscription for reinitialization (SQL Server
re-creates the snapshot of data). You must call the
Synchronize method (which reloads the snapshot) to see
data based on the reinitialization.

Synchronize Call this to invoke the merge replication.

Note

SQL Server CE Merge Replication supports the same set of data types as RDA and
uses the same mappings from SQL Server data types.

Adding a Subscription

For the first stage of merge replication, you must create the subscription database on the smart device and
create the subscription to the published database on the server. You do this by creating a SqlCeReplication
object and setting the required properties listed in Table 7-11. You can either set them directly or specify them
as arguments to the SqlCeReplication constructor, and then call its AddSubscription method.

Table 7-11. Required Properties of the SqlCeReplication Object

Property Description

InternetURL The URL to the Sqlcesa30.dll.

InternetLogin Required only if you are not using Anonymous Authentication
mode.

InternetPassword Required only if you are not using Anonymous Authentication
mode.

Publisher Name of the publishing server. If this is a named instance of SQL
Server, it will be in the format ServerName/InstanceName.

PublisherDatabase The name of the published database.

Publication The name of the publication on the published database.

Property Description

Subscriber The name of your subscription; this is just an identification string.

SubscriberConnectionString The local connection string for the SQL Server CE database file
(*.sdf).

After calling the AddSubscription method, your local SQL Server CE database file will have been created, but the
tables and their initial snapshot of data will not yet be present. (You could confirm this by using the Query
Analyzer to look at the local database objects.) You must call the Synchronize method to transfer the initial
snapshot of data to the new SQL Server CE database.

Synchronization

The Synchronize method of the SqlCeReplication object gets the initial snapshot of data for your local SQL Server
CE database if this is the first time you call it (or the first time after the publication has been marked for
resynchronization). After the initialization of data has taken place, subsequent calls you make to the Synchronize
method invoke the merge replication, and only changes to the data will be sent and received.

The following sample code (from the UsingSqlCEMRSample application) shows a subscription being set up only if
the local database file does not already exist. Notice how the code disposes of the SqlCeReplication object at the
end but doesn't drop the subscription. The next time it executes this method, there is no reinitialization of the
data in the local database.

using System.Data.SqlServerCe;

...

private void Merge()

{

 using (SqlCeReplication rep = new SqlCeReplication(

 @"http://MyServer/TrafficMR/sqlcesa30.dll", //URL to Agent

 @"MyDomain\ReplUser", // InternetUser

 "P@ssw0rd", // InternetPassword

 "MYSQLSERVER", // Publisher server

 "Traffic", // Publisher Database

 "TrafficMR", // Publication name

 "Testing", // Subscriber name

 @"Data Source=\My Documents\TrafficMR.sdf") //Connection string to

 //local database

)

 {

 try

 {

 // If the local database does not exist, subscribe to the

 // publication, creating the local database at the same time.

 if (!System.IO.File.Exists(@"\My Documents\TrafficMR.sdf"))

 {

 rep.AddSubscription(AddOption.CreateDatabase);

 }

 // Synchronize with the publication.

 rep.Synchronize();

 }

 catch (SqlCeException ex)

 {

 DisplaySQLCEErrors(ex);

 }

 }

}

After you have created a subscription, and the initial transfer of snapshot data has been used to create the local
database, your application code can update the copy of the data in the local SQL Server CE database. Any
changes that you make are merged into the published database on the backend SQL Server the next time you
call the Synchronize method.

Troubleshooting Merge Replication

As with RDA, most of the problems you will encounter with merge replication can be traced back to the security
setup. The following gives a sequence of checks you can use to locate and resolve problems with merge
replication:

Check the users and permissions at each stage of the sequence from the InternetLogin to the published
database.

Check that you are using the correct version of the SQL Server replication objects for the version of SQL
Server and service pack you are using. (See the opening paragraph of the section titled "Synchronizing
Data Using SQL Server 2005 Remote Data Access" earlier in this chapter.)

If you are using an Identity column, you must find the next available number and reseed before an insert
can be successful. You will also have to set up ranged identity columns on the published database to
prevent errors when the new data is merged.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

This chapter explains how to use SqlClient and SQL Server CE RDA and merge replication, and it looks at some
useful techniques for using Web Services.

Web Services provides a flexible solution that is not tied to the use of SQL Server as the backend resource. It
requires more programming effort to implement a sophisticated data synchronization solution than RDA or merge
replication requires. You can use the Disconnected Service Agent to allow your applications to use Web Services
over an intermittently connected network, and you can use compression to reduce the volume of data sent over
the network.

You can use SqlClient only where you have a direct network connection to SQL Server over a LAN. SQL Server
RDA and merge replication work over a LAN or over the Internet, and both are excellent ways of copying data
from a backend SQL Server, using the copied data in your application on the mobile device, and then later
synchronizing the changes with the master copy of the table in SQL Server. Of these two, RDA is simpler to set
up and is secure and works well on a simple table, though it has no built-in conflict resolution; the last updater
wins, overwriting any updates that may have been applied by other clients. Merge replication is harder to
configure but once set up is ideal for situations where you have multiple updaters for a table, all of which need to
keep a synchronized copy of the table.

You might think (correctly) that the fastest way to get up and running with sharing central SQL Server data with
smart device applications is by using RDA. However, it is recommended that you invest the extra initial (and
setup) effort and use merge replication. With the considerable extra server-side functionality provided by SQL
Server replication, you can deal with any future increase in the complexity of your application and ultimately can
support larger numbers of users through your ability to improve the SQL Server replication configuration by
partitioning data and using more physical servers.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 8. Networking

In this chapter:

Understanding Complications of Networking and Mobile Devices 309

Using Web Services 310

Understanding System.Net 311

Using IrDA and Bluetooth 319

Using Serial Ports 320

Understanding System.Messaging 323

This chapter looks at a number of networking technologies that are available to a developer of mobile
applications. We begin with a recap of Web Services, which is covered in Chapter 7, "Exchanging Data with
Backend Servers," and then look at a couple of methods of sending data over the Internet and TCP/IP networks.
We then look at personal area networking technologies of the Infrared Data Association (IrDA), Bluetooth, and
RS-232 serial transfer. The chapter ends with a look at the System.Messaging namespace, which is a set of
technologies for supporting loosely coupled messaging over TCP/IP networks. Chapter 9, "Getting Connected,"
looks at topics surrounding making a connection and responding to changes in connection states.

Understanding Complications of Networking and Mobile Devices

Writing networking code for mobile devices can be much more difficult than it is for a static computer. You have
to work around the fact that network availability will be intermittent, and often there are costs involved based on
the volume of network traffic. For example, many mobile networks calculate their bills for data services by the
number of kilobytes transferred. You can mitigate these issues by implementing your own scheme for encoding
your data to be as efficient as possible. The Microsoft .NET Compact Framework doesn't include binary
serialization, so you must implement something specific to your needs or use a third-party solution. One such
solution is the CompactFormatter, which is designed to work similarly to the desktop BinaryFormatter class
(www.freewebs.com/compactFormatter/index.html).

You may not necessarily choose a binary solution. If your data can be represented purely as alphanumeric
characters, you can encode it as American Standard Code for Information Interchange (ASCII) text rather than
the default Unicode, and this will halve the size of your data. To combat the cost issue, you can build your
application to send data only if the user initiates the operation, or only at certain times or when a specific
network connection is active. The next chapter investigates connection types and status in further detail. You
also must gracefully handle the scenario when the network connection drops during an operation.

Initiating a connection from the server to a device can be made difficult by constantly changing IP addresses,
which in most cases are not assigned from a public range. There are two ways to overcome this: You can invest
in a third-party middleware product such as Broadbeam or IBM WECM, or you can write your own mechanism.
You might do this by having your client devices establish a connection to the server and wait for a response. This
is similar to the Direct Push technology used between Microsoft Windows Mobile 5.0 and Exchange Server 2003.
You can read more about Direct Push on the Windows Mobile Home Web site at
www.microsoft.com/windowsmobile/business/directpushemail.mspx.

Microsoft is aware of the challenge, and in the forthcoming version 3.5 of the Compact Framework it will add an
e-mail-based provider for Windows Communication Framework (WCF), a fully managed extensible mechanism for
messaging. You can read about the current desktop version of WCF on the Microsoft MSDN Web site at
msdn2.microsoft.com/en-us/netframework/aa663324.aspx.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Using Web Services

Web services are self-describing, platform-independent remote method calls. Microsoft Visual Studio and the
.NET Framework are designed so that you can call a Web service from your code very easily. You can browse to
your chosen Web service through the Visual Studio integrated development environment (IDE) and have the
necessary device-side code generated for you. This generated code then makes calling a Web service just the
same as calling a local method in your own code.

Because of the nature of mobile devices, you have to design your application so that it can gracefully fail if no
network connection is currently available. You must also understand that many devices will be connected to
low-bandwidth connections, and so operations may take considerably longer than they would for a desktop
computer application connected to broadband. As well as the apparent speed of the operation, you should also be
aware that most mobile networks are charged by the volume of data transferred, so it is probably in your interest
to look carefully at reducing the volume of data sent and received in a Web service call. Chapter 7 describes this
in the section titled "Compressing Web Service Payload." Chapter 7 also includes a sample based on the
Microsoft patterns & practices Disconnected Services Agent, which supports queuing Web Services operations.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Understanding System.Net

Networking functionality is housed in the System.Net namespace, which in turn is in System.dll. This is a subset
of the functionality available in the full .NET Framework. The two main areas of networking functionality are the
WebRequest classes, which perform Hypertext Transfer Protocol (HTTP) request/response communication, and
the Socket class, which allows a lower level of two-way communication.

WebRequest

The WebRequest and associated WebResponse classes provide a base implementation for performing operations
over a number of network technologies. You can use specific derived classes for working with different protocols
such as http://, ftp://, and file://. The Compact Framework has only a limited implementation and doesn't have
any built-in File Transfer Protocol (FTP) support. You can extend the support to additional protocols by writing
your own class derived from WebRequest, and this can be registered to a particular Uniform Resource Identifier
(URI) scheme so that your class is created from a call to WebRequest. Create. Discussing this is out of the scope
of this book, but you can find details of a shared-source example later in this chapter in the section titled "Using
IrDA and Bluetooth."

Out of the box, the Compact Framework supports the HTTP and Secure HTTP (HTTPS) protocols through the
HttpWebRequest class. With this support, you can perform GET, PUT, and POST operations to the Web. In the
following example, we demonstrate how easy it is to download a file from a specific URI and save it locally on the
device.

System.Uri is a class you can use to encapsulate a unique address, and a new instance can be created by passing
in the URI as a string. With the class, you can then query individual parts of the URI string, as shown in Table
8-1.

Table 8-1. System.Uri Properties

Property Value

OriginalString http://www.microsoft.com
/windowsmobile
/devicecenter.mspx

Scheme http

Host www.microsoft.com

AbsolutePath /windowsmobile
/devicecenter.mspx

A new HttpWebRequest is created either by calling WebRequest.Create with the URI or by using the
HttpWebRequest constructor. The advantage of the latter is that you don't need to cast from the base
WebRequest class to use HTTP-specific properties of the class. By default, you don't need to set any other
properties on the request object. The default operation is a GET, which you can use to retrieve content. After it is
created, you call GetResponse on the WebRequest and it returns a WebResponse object. This includes a stream
to allow you to read from the response. To help you put all these concepts together, the following code sample
shows a method to perform a download and save the received data to the device file system.

private void Download(Uri address, string localPath)
{
string filename = address.Segments[u.Segments.Length - 1];
WebRequest request = WebRequest.Create(u);

//Perform the GET request.
 WebResponse response = request.GetResponse();

 //Get stream containing received data.
 Stream s = response.GetResponseStream();

 //Open filestream for the output file.

 FileStream fs = new FileStream(Path.Combine(localPath, filename),
FileMode.Create, FileAccess.Write);

//Copy until all data is read.
 byte[] buffer = new byte[1024];
 int bytesRead = s.Read(buffer, 0, buffer.Length);
 while (bytesRead > 0)
 {
 fs.Write(buffer, 0, bytesRead);
 bytesRead = s.Read(buffer, 0, buffer.Length);
 }

 //Close both streams.
 fs.Close();
s.Close();
 response.Close();
}

You can use the WebRequest approach to download or upload content for your application, or even to download
application packages that you can then install. (Building .cab files is described in Chapter 6, "Completing the
Application: Packaging and Deployment".)

Sockets

Sockets represent a lower-level method of sending and receiving data over a network connection. The
System.Net.Sockets namespace contains the Socket class and associated classes and enumerations. Under the
hood, this uses the Windows Sockets (winsock) implementation on the host operating system, which in turn is
modeled on the Berkeley Sockets architecture for UNIX. Out of the box, the Compact Framework supports User
Datagram Protocol (UDP) and TCP/IP socket communications similar to the full .NET Framework. Additionally,
IrDA is supported by a library specific to the Compact Framework—System.Net.IrDA.dll.

Tip

Because this solution involves using a TCP port other than port 80, which is used for
HTTP and Web Services, you must ensure that any firewalls on your network are
configured to allow traffic on the port you choose.

Differences Between the Desktop Framework and the Compact Framework

The Compact Framework implementation of Socket includes a subset of the features contained in the desktop
version because of differences in the underlying native Windows Sockets functionality. For example, it is not
possible to set the send and receive buffer sizes and timeouts. Also, a number of Internet Protocol version 6
(IPv6) properties are not implemented. The Compact Framework socket doesn't support the Disconnect method
and subsequent reuse of the same Socket object. This isn't really a problem because you can call Close on a
Socket and create a new one easily. Finally, the desktop version has a method to send an entire file over the
Socket. This method is not included in the Compact Framework, but it is easy to work around that fact: The file
can be read into a buffer and this buffer written to the socket in a loop until the entire file has been read. The
following sample includes a helper method to do this synchronously.

//Send file contents to a socket.
private static void SendFile(Socket s, string filename)
{
FileStream fs = new FileStream(filename, FileMode.Open);

byte[] buffer = new byte[256];
int bytesRead = fs.Read(buffer, 0, buffer.Length);
while (bytesRead > 0)
{
 s.Send(buffer, bytesRead, SocketFlags.None);

 //Read next block.
 bytesRead = fs.Read(buffer, 0, buffer.Length);
}

fs.Close();
}

SocketException

As described in Chapter 4, "Catching Errors, Testing, and Debugging," errors encountered are raised in the form

of exceptions. In the case of the Socket class, the majority of possible exceptions will be caused by Windows
Sockets errors returned from the native functions. A specialized exception type, the SocketException, is provided
to encapsulate these errors. The ErrorCode property returns the socket error message. A transfer can fail for
numerous reasons, such as inability to contact the remote computer or a connection breaking partway through
the transfer. This is especially an issue on a mobile device where a continuous network connection cannot be
relied upon.

You can handle these issues by wrapping your network code in try..catch blocks to catch SocketExceptions. You
can then make informed decisions about the reason for the exception. For example, a Connect attempt may fail if
the specific port you are using is blocked, the remote computer is unavailable, or the network connection has
been lost. If an exception occurs during data transfer, it is often because of a network problem, or possibly the
remote computer disconnected because it did not receive the expected data. Probably the most common socket
exception has the code 10054 and message "An existing connection was forcibly closed by the remote host." This
can commonly occur after you open a connection to a remote device and then first try sending data to it or
reading from it. This is because a TCP socket doesn't throw an exception at the time you connect, even if the
remote computer is unreachable or not listening on the specified port.

Using Sockets

To demonstrate sending and receiving information over sockets, we use the example of a simple tool that records
sales prospects for a sales professional. By using sockets, we send data to a colleague or the central server. We
revisit the same scenario later in the chapter when we look at another networking technology
—System.Messaging. The custom data type is the Prospect class, which simply has three fields—Name,
Company, and Number. Related to the Socket class, there are a number of helper classes to do some of the
common tasks. For TCP networking, these are the TcpClient and TcpListener classes. These are also found in the
System.Net.Sockets namespace and wrap a Socket instance. TcpClient is used to establish an outgoing
connection over TCP/IP, and TcpListener contains the functionality to listen for incoming connections from remote
devices.

A Simple Server

In our sample, we create a TcpListener and run a background thread to listen for incoming connections. In a
production system, the server would create a new thread to handle each incoming connection. To make the
example code easier to follow, the server uses a single thread and so handles only a single connection attempt.
When a connection is made, we read raw text from the socket and send a response to indicate success or failure.
The equivalent code using just sockets and not the TcpListener/TcpClient helper classes is shown in inline
comments in the code sample.

private void ListenerThread()
{
//Create a new listener to listen on the custom port.
TcpListener listener = new TcpListener(
new IPEndPoint(IPAddress.Any, port));
listener.Start();

//Socket listenerSocket =
//new Socket(AddressFamily.InterNetwork,
//SocketType.Stream, ProtocolType.Tcp);
//listenerSocket.Bind(new IPEndPoint(IPAddress.Any, port));
//listenerSocket.Listen();

try
{
while (true)
{
//Get incoming connection (blocking).
TcpClient incomingClient = listener.AcceptTcpClient();
//Socket incomingSocket = listenerSocket.Accept();

//Get address of remove device.
IPEndPoint ep = (IPEndPoint)incomingClient.Client.RemoteEndPoint;
//IPEndPoint ep = (IPEndPoint)incomingSocket.RemoteEndPoint;
IPAddress senderAddress = ep.Address;

//Get a stream to read from the socket.
NetworkStream ns = incomingClient.GetStream();
//NetworkStream ns =
//new NetworkStream(incomingSocket, true);

StreamReader sr =
new StreamReader(ns, System.Text.Encoding.Unicode);
StreamWriter sw =
new StreamWriter(ns, System.Text.Encoding.Unicode);

string operation = sr.ReadLine();

if (operation == "PROSPECT")

{
//sending the data as a plain string
string rawProspect = sr.ReadLine();
string[] fields = rawProspect.Split(',');

//Perform simple validation of received data
//and send a response.
if (fields.Length == 3)
{
//Send acknowledgment.
sw.WriteLine("OK");
}
else
{
sw.WriteLine("ERROR");
}

Prospect receivedProspect = new Prospect();
receivedProspect.Name = fields[0];
receivedProspect.Company = fields[1];
receivedProspect.Number = fields[2];

this.Invoke(
new AppendToListBoxDelegate(AppendToListBox),
new object[] { senderAddress.ToString()
+ " " + receivedProspect.ToString() });
}
else if (operation == "FILE")
{
string filename = sr.ReadLine();
byte[] len = new byte[8];
ns.Read(len, 0, 8);
Int64 fileSize = BitConverter.ToInt64(len, 0);

string filepath =
Path.Combine(System.Environment.GetFolderPath(Environment.SpecialFolder.Personal),
filename);
FileStream fs = new FileStream(filepath,
FileMode.CreateNew);
byte[] buffer = new byte[256];
int bytesread = ns.Read(buffer, 0, buffer.Length);
int totalbytesread = bytesread;
try
{
while (totalbytesread < fileSize)
{
fs.Write(buffer, 0, bytesread);

bytesread = ns.Read(buffer, 0, buffer.Length);
totalbytesread += bytesread;
}
fs.Close();

sw.WriteLine("OK");

this.Invoke(
new AppendToListBoxDelegate(AppendToListBox),
new object[] { senderAddress.ToString()
+ " " + filename });
}
catch
{
sw.WriteLine("ERROR");
}

}
ns.Close();
}
}
finally
{
//Stop the listener.
listenerClient.Stop();
//listenerSocket.Close();
}
}

To show the user what happened, we insert the received record into a list box. Because we are sending this from
a background thread to a user interface (UI) control, we must use Control.Invoke.

Client Connections

To allow the user to send an outgoing prospect record, we use a text box to accept the IP address (for example,
of the server). The IPAddress class has a static Parse method to read the IP address from a string. In a real
scenario, you wouldn't expect the user to know this information, but here it clearly illustrates what is happening.
We can test the application by using the localhost IP address 127.0.0.1, and our own application will receive the
incoming connection. When the Share button is tapped, a Socket is created to connect to the remote device, and
then the Prospect details are sent over the Socket as a string. We wait for a response from the remote device and
record whether the transfer was successful or not. Because any network communication is potentially a slow
operation, you would typically perform such tasks in a background thread so that your application remains
responsive.

private void btnShare_Click(object sender, EventArgs e)
{
IPAddress target;

try
{
target = IPAddress.Parse(txtRecipient.Text);
}
catch
{
MessageBox.Show("Invalid IP address");
return;
}

//Create prospect object.
Prospect p = new Prospect();
p.Name = txtName.Text;
p.Company = txtCompany.Text;
p.Number = txtNumber.Text;
//Create new outbound socket.
Socket clientSocket = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);

clientSocket.Connect(new IPEndPoint(target, port));

NetworkStream ns = new NetworkStream(clientSocket, true);
StreamWriter sw = new StreamWriter(ns);
StreamReader sr = new StreamReader(ns);

try
{
//Write a header to say that following data is a prospect record.
sw.WriteLine("PROSPECT");

sw.WriteLine(p.ToString());
string response = sr.ReadLine();
switch (response)
{
case "OK":
this.Invoke(
new AppendToListBoxDelegate(AppendToListBox),
new object[] { target.ToString() +
" Sent successfully" });
break;
case "ERROR":
this.Invoke(
new AppendToListBoxDelegate(AppendToListBox),
new object[] { target.ToString() +
" Failed to send" });
break;
}
}
catch(SocketException se)
{
MessageBox.Show("Exception trying to send: " + se.ToString());
}
finally
{
//Close the stream and underlying socket.
ns.Close();

}
}

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Using IrDA and Bluetooth

The Compact Framework provides an IrDA library; however, there is no matching library in the full framework.
Fundamentally, this was designed to work in the same way as sockets programming over TCP. The main
difference is that IrDA has the ability to search for nearby devices using the IrDAClient.DiscoverDevices method.
The following code sample shows how to perform a discovery:

private void btnDiscover_Click(object sender, EventArgs e)

{

IrDAClient ic = new IrDAClient();

IrDADeviceInfo[] devices = ic.DiscoverDevices(6);

dataGrid1.DataSource = devices;

}

The IrDADeviceInfo class groups together information on a specific device such as its address, display name, and
hint bits, which are used to describe the type of device. The address is not a fixed identifier and is valid only for
the current session because it is created during negotiation between devices. Because IrDA requires a clear
line-of-sight connection to a nearby device, you can use it only for exchanging data with one device at a time.
Typical client and server applications are created using the IrDAClient and IrDAListener classes, respectively;
these are analogous to the TcpClient and TcpListener classes described in the section titled "Using Sockets"
earlier in this chapter. As with TCP connections on a mobile device, it's very important to handle connection
errors gracefully in your applications because an IrDA connection can easily be broken.

There is no inbuilt support for Bluetooth in the .NET Framework, desktop version or Compact Framework. An
added complication is that the device manufacturer can choose to use a Bluetooth networking stack, which may
either be the Microsoft version, which is part of the Windows CE modular operating system, or be from a
third-party provider. A Bluetooth stack follows a layered architecture to support the connectivity and protocols
used for a whole range of connection types over Bluetooth. Microsoft provides a native application programming
interface (API) around its Bluetooth networking stack that is based on sockets; however, you need to add some
additional classes before you can use System.Net.Sockets functionality. The easiest way to take advantage of this
is to use a free shared-source library called 32feet.NET (32feet.net), which supports both IrDA and Bluetooth,
has both Windows CE and Windows XP versions, and is useful if you want to reuse code on Tablet PCs or laptop
computers.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Using Serial Ports

Serial ports are a communications technology that you can use to talk to peripheral devices attached to your
device. The technology is tried and tested, and lots of specialist hardware sensors and accessories such as Global
Positioning System (GPS) receivers communicate by using serial ports. .NET Compact Framework version 2.0
supports the SerialPort component, which was also introduced in version 2.0 of the full framework.The key port
properties exposed are listed in Table 8-2.

Table 8-2. SerialPort Properties

Property Description

PortName This is the full name for the port without the trailing colon.

BaudRate Physical baud rate in bits per second; this must match that used on
the remote device.

StopBits Number of stop-bits transmitted, usually 1.

NewLine Determines the character used to represent a new line. Used by the
ReadLine() method. Examples are \r and \r\n.

We demonstrate using the SerialPort component by stepping through the process of building a simple terminal
application designed to connect to a serial port and send and receive data. This is a very simple application with
a single form. The SerialPort component exposes events when data is received, and these are marshaled through
to the UI thread. The SerialPort component has defined buffers that are used for both incoming and outgoing
data. The class exposes a simple set of properties, methods, and events and works directly with the Windows CE
file APIs under the hood. A simple way of testing the application is to open a port connected to a GPS receiver.
When a connection is established, the device will send back National Marine Electronics Association (NMEA) text
data. We don't go into detail about parsing this data to determine the GPS location because it is out of the scope
of this book, and some free utility libraries will do this for you—see www.hardandsoftware.net for the DecodeGPS
library.

Before you can open a SerialPort, you need to know the port name. The SerialPort class exposes a static method
GetPortNames() to return a list of available serial ports. We call this on the Load event of our main form and
assign the resulting string array to a ComboBox:

private void Form1_Load(object sender, EventArgs e)
{
//Populate the combo box with available port names
//(not all may actually be valid)
//such as Bluetooth etc emulated ports.
cbPort.DataSource = System.IO.Ports.SerialPort.GetPortNames();
}

The user can choose the port from the ComboBox and set other properties such as BaudRate, and then tap
Connect. In the method handling this menu item, we provide the code to establish a connection if the current
state is disconnected or to disconnect the current connection. After the port is opened, a handler is set up for the
DataReceived event, and this event is raised whenever the port has data ready for processing.

private void mnuConnect_Click(object sender, EventArgs e)
{
//Button functionality toggles depending on port status.
if (spPort.IsOpen)
{
//Unhook the event handler.
spPort.DataReceived -= new
System.IO.Ports.SerialDataReceivedEventHandler(
spPort_DataReceived);
//Close the port.

spPort.Close();
mnuConnect.Text = "Connect";
btnSend.Enabled = false;
}
else
{
//Reset the data text box.
txtData.Text = "";
//Set the port settings.
spPort.PortName = cbPort.SelectedValue.ToString();
spPort.BaudRate = int.Parse(txtBaud.Text);

try
{
//Try opening the port and hook up the events.
 spPort.Open();
 spPort.DataReceived += new
System.IO.Ports.SerialDataReceivedEventHandler(
spPort_DataReceived);
 mnuConnect.Text = "Disconnect";
 btnSend.Enabled = true;
 }
 catch
 {
//An exception may be thrown
//if the port isn't actually valid.
MessageBox.Show("Port not recognized", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Exclamation,
MessageBoxDefaultButton.Button1);
}

}
}

The spPort_DataReceived method receives data and appends it to a TextBox. Because this event is not raised on
the user interface thread, we must use Control.Invoke to another method ShowNewData, which updates the
TextBox.

//method invoked on ui thread to append text to text box
void ShowNewData(string data)
{
txtData.Text += data;
}
//custom delegate to receive a single string for marshaling
//to the user interface thread
private delegate void InvokerDelegate(string data);

//event handler for serial port data received
void spPort_DataReceived(object sender,
System.IO.Ports.SerialDataReceivedEventArgs e)
{
this.Invoke(new InvokerDelegate(ShowNewData),
new object[] { spPort.ReadExisting() });
}

We can send data to the port using the SerialPort Write and WriteLine methods. WriteLine writes a string and
follows it with the newline character that is defined on the specific serial port. Tapping the Send button in our
sample sends the contents of the outgoing text box to the serial port:

//Send an outgoing message to the remote device (appends a line break).
private void btnSend_Click(object sender, EventArgs e)
{
if (spPort.IsOpen)
{
 if (txtOutgoing.Text.Length > 0)
 {
 spPort.WriteLine(txtOutgoing.Text);
 }
}
}

As with any other networking or communication technology we have described, you can encode your data in any

way you see fit. The example application works only with devices that return data as plain text and will display
garbage characters if binary data is used.

Virtual Serial Ports

Most devices support serial port emulation to expose Bluetooth devices to legacy applications that support only
serial ports. For example, navigation software expects a GPS receiver to be connected to a serial port; in the case
of a Bluetooth receiver, you must assign a virtual serial port that can be selected from in the navigation software.
Because the way these are configured can vary between devices and the Bluetooth networking stack used on the
device, it is not possible to provide definitive instructions. On Windows Mobile 5.0, when the Microsoft Bluetooth
stack is used, there is a section of the Bluetooth control panel used to configure virtual serial ports, and these are
configured in the device registry. After a virtual port is set up on your device, you use it programmatically just as
you would a device connected by a serial cable.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Understanding System.Messaging

Although System.Messaging is a new set of functionality in .NET Compact Framework 2.0, it wraps a technology
called Microsoft Message Queuing (MSMQ), which has been available to native code developers for some time and
is present in the desktop .NET Framework. MSMQ provides loosely coupled store-and-forward messaging between
applications and different computers. Each message contains a packet of raw data that can be up to 4 megabytes
(MB) in size, though it is uncommon to create such large messages. As with many APIs, this is a subset of a
standard Windows API that is exposed as a set of Component Object Model (COM) interfaces and C functions.
The System.Messaging namespace removes all complexities of calling into this native code and provides a subset
of the System.Messaging namespace that is present in the full .NET Framework.

Installing MSMQ

MSMQ is an optional component of Windows CE: It can be built into a custom platform by the operating system
developer, or in the case of Windows Mobile, it is shipped separately to be installed in device memory. The
standalone Windows Mobile 2003 software development kit (SDK) includes the required files to be installed
manually on the target device. The Windows Mobile 5.0 SDK does not include the MSMQ components, but instead
they are deployed separately as part of the Redistributable Server Components Package for Windows Mobile 5.0
on the Microsoft Download Center Web site at www.microsoft.com/downloads/details.aspx?FamilyID=cdfd2bb2-
fa13-4062-b8d1-4406ccddb5fd&DisplayLang=en. Because this updated version is packaged as a compressed
.cab file, it cannot be installed on device versions prior to Windows Mobile 5.0. Another difference in the Windows
Mobile 5.0 version is that it supports using HTTP as a transport, rather than just the default binary transport. This
can simplify your network configuration because data is sent over TCP port 80. The Windows Mobile 2003 SDK,
which is included with Visual Studio 2005, does not include the MSMQ components, so if you are targeting
devices that run Pocket PC 2003, you must install the standalone Pocket PC 2003 SDK, which you can download
from the Microsoft Download Center Web site at www.microsoft.com/downloads
/details.aspx?FamilyID=9996b314-0364-4623-9ede-0b5fbb133652&DisplayLang=en.

To install these Pocket PC 2003 files on the device, you must copy them all to the Windows directory. For
Windows Mobile 5.0, simply copy the .cab file onto the device and install. Some further steps that apply to both
versions are required to set up the MSMQ service on the device.

You can use the Msmqadm.exe application to control the service, and you must issue it with a number of
commands to register the service correctly on the device. These can be called from your managed application
using the System.Diagnostics.Process.Start method and checking the process ExitCode for status. The following
code example shows these called from a method in the sample application.

//helper function to launch a process and wait for the result code

private static int ShellWait(string app, string args)

{

if (!File.Exists(app))

 {

 return -1;

}

Process p = Process.Start(app, args);

p.WaitForExit();

return p.ExitCode;

}

[DllImport("coredll.dll", SetLastError=true)]

private extern static int CloseHandle(IntPtr handle);

[DllImport("coredll.dll", SetLastError = true)]

private extern static IntPtr ActivateDevice(string lpszDevKey,

int dwClientInfo);

private static void InitMsmq()

{

string msmqadmPath = "\\Windows\\msmqadm.exe";

if (ShellWait(msmqadmPath, "status") < 0)

{

 //failed, msmq isn't present

string apppath = Path.GetDirectoryName(

System.Reflection.Assembly.GetExecutingAssembly().GetName().CodeBase);

if (System.Environment.OSVersion.Version.Major < 5)

{

//copy files (PPC2003)

File.Copy(Path.Combine(apppath, "msmqadm.exe"), "\\Windows\\msmqadm.exe");

File.Copy(Path.Combine(apppath, "msmqadmext.dll"),

"\\Windows\\msmqadmext.dll");

File.Copy(Path.Combine(apppath, "msmqd.dll"),

"\\Windows\\msmqd.dll");

File.Copy(Path.Combine(apppath, "msmqrt.dll"),

"\\Windows\\msmqrt.dll");

}

else

{

//Install CAB (WM5.0)

string cabname = Path.Combine(apppath, "msmq.arm.cab");

ShellWait("\\Windows\\wceload.exe", "\"" + cabname + "\"");

}

//initialize

ShellWait(msmqadmPath, "register cleanup");

ShellWait(msmqadmPath, "register install");

ShellWait(msmqadmPath, "register");

ShellWait(msmqadmPath, "enable binary");

//Register the service.

IntPtr handle = ActivateDevice("Drivers\\BuiltIn\\MSMQD", 0);

CloseHandle(handle);

//final check on the status

if (ShellWait(msmqadmPath, "status") < 0)

{

throw new ApplicationException("Failed to register MSMQ");

}

}

}

The Windows CE version of MSMQ doesn't support reading from remote queues, and neither does it support some
of the more advanced security features such as encryption and access control lists (ACLs) for queues. It is not
possible to search for public queues published in the Microsoft Active Directory directory service. Queues must be
created as private queues on the server to be used by Message Queuing on Windows CE.

Set Up a Private Queue

The Windows operating system doesn't have MSMQ installed by default, so you must add it by using
Add/Remove Programs in Control Panel and selecting Add/Remove Windows Features. After it is installed, you
can manage message queuing from Computer Management in Administration Tools in Control Panel, as shown in
Figure 8-1.

Figure 8-1. Microsoft MessageQueue Management Console

[View full size image]

Transaction Support

Message queuing on Windows CE supports only basic transaction support to ensure once-only delivery in the
order the messages were originally sent. It doesn't support multimessage transactions using Microsoft
Transaction Coordinator (MTC). You can set transaction support on a server queue simply by selecting the option
when creating the queue. You can't change this setting once the queue has been created. Figure 8-2 shows the
New Private Queue dialog box you can use to create a new private queue.

Figure 8-2. New Private Queue dialog box

Formatters

Formatters are used to convert your data into a form that can be sent in an MSMQ message. The desktop .NET
Framework has three built-in formatters: ActiveXMessageFormatter, BinaryMessageFormatter, and
XmlMessageFormatter. Because the Compact Framework includes no support for Microsoft ActiveX or binary
serialization, it's no surprise that it supports only XmlMessageFormatter. This uses the Extensible Markup
Language (XML) serialization built into the framework to produce an XML fragment that on the receiving
computer can be deserialized into the same object type. This does, however, mean that individual messages are
quite large in comparison with a binary representation of an object, which can be a concern when run over slow
and expensive networks.

You must make sure you use the same formatter on both ends of the same queue. You are not, however, limited
to the single MessageFormatter provided by the Compact Framework because it is possible to implement your
own custom MessageFormatter. Nothing is stopping you from implementing your own version of the missing

BinaryMessageFormatter or other missing features such as encryption. Writing a custom MessageFormatter is
discussed in the article titled "How to create a custom message formatter by using Visual C#" on the Microsoft
Help and Support Web site at support.microsoft.com/default.aspx?scid=kb%3bEN-US%3b310683.

Queuing Messages from the Device

After MSMQ is installed on the device and the server queue is created, you can start to queue some messages.
You can use the MessageQueue class to do this. You must supply the queue name. Queue names are similar in
concept to Uniform Resource Locators (URLs), but the format is different; the target computer can be addressed
either by IP address or by machine name. MSMQ uses the Domain Name System (DNS) and Windows Internet
Name Service (WINS) as available to determine the target computer. A queue name, therefore, looks like either
of the following:

FormatName:DIRECT=OS:CUBE\Private$\Prospects

FormatName:DIRECT=TCP:192.168.2.2\Private$\Prospects

You can also use a local queue. For this, the machine name or IP address is replaced with a single period:

.\Private$\Prospects

This can be set in code by using the Path property, or you can drop a MessageQueue onto your form in the
designer and set the path in the properties window.

this.mqRemote.Path = "FormatName:Direct=OS:CUBE\\Private$\\Prospects";

The MessageQueue can then be used to send messages. For example, this is our sample Prospect class:

Prospect p = new Prospect();

p.Name = txtName.Text;

p.Company = txtCompany.Text;

p.Number = txtNumber.Text;

mqRemote.Send(p);

To send messages to a transactional queue requires two changes to your code. First, you must add the
XACTONLY identifier to the queue path, so our previous two examples become the following:

FormatName:DIRECT=OS:CUBE\Private$\Prospects:XACTONLY

FormatName:DIRECT=TCP:192.168.2.2\Private$\Prospects:XACTONLY

Second, you must call the overload of the Send method, which accepts a MessageQueueTransactionType, for
example:

mqRemote.Send(p, MessageQueueTransactionType.Single);

If you do not make these changes, your message will not be delivered to the transactional queue.

The formatter on the receiving queue must have the TargetTypes or TargetTypeNames properties set to tell it
into what types to convert the XML. You must do this only once when setting up the queue. The receiving thread
to read from a local queue is very simple. No processing of the received object is done in this example; it's
simply added to the on-screen list.

private void ReceiveThread()

{

XmlMessageFormatter formatter = new XmlMessageFormatter(

new Type[] { typeof(Prospect) });

mqLocal.Formatter = formatter;

while (listening)

{

Message m = mqLocal.Receive();

Prospect p = (Prospect)m.Body;

this.Invoke(new AppendToListBoxDelegate(AppendToListBox),

new object[] { p.ToString() });

}

}

One potential use for a local queue is as an interprocess communication (IPC) method. Because another
application could listen on the queue and you could pass messages back and forth. The other application need
not be a managed application because MSMQ also has a native API.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

This chapter looks at the range of networking and communication methods available in the Compact Framework.
When you use any of these techniques, you must understand the cost and performance issues you may
encounter on wireless networks, and you must design your code so as not to assume the connection will always
be available. You can control this to an extent by how you encode your data to send over a connection, a factor
completely in your control when you use low-level sockets or SerialPort. The next chapter looks at techniques to
establish network connections and monitor connection state.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 9. Getting Connected

In this chapter:

Understanding Connections on Windows Mobile 331

Using Desktop Passthrough 335

Making Voice and Data Calls 337

Enabling and Disabling Adapters 346

SMS Interception 353

Mobile application developers often spend more time and effort than their desktop colleagues do on interacting
with the mobile device platform on tasks that are not directly related to the business functionality of the
application but that are still essential to a successful solution. Mobile devices usually support a number of
different networking technologies, including direct cable connections or wireless connections over a mobile phone
network, such as WiFi or Bluetooth. This chapter looks at the tasks necessary to establish a network connection
and how to manage the network adapters on your device.

Understanding Connections on Windows Mobile

Microsoft Windows Mobile includes settings that are responsible for all the configured connections on the device.
Because the settings screens manage a variety of connection types, they can sometimes look confusing, but they
are central to how the Connection Manager on the device works. Later in this chapter, we use the Connection
Manager application programming interfaces (APIs) to establish connections, so it is important to understand the
architecture.

You can access the settings by tapping Start, Settings, and on the Connections tab, tapping the Connections
item. This opens the Settings dialog box, as shown in Figure 9-1, which contains two tabs labeled Tasks and
Advanced. The first thing to notice is that the tasks are split into two clearly defined groups: My ISP, which
contains tasks related to connections to the Internet, and My Work Network, which contains tasks relevant to
connecting to a corporate network either directly or by using a virtual private network (VPN) connection. Work
refers to a corporate network; you would typically use it to access servers within your firewall, including, for
example, a Microsoft Exchange Server. The Internet destination network supports all other traffic destined for the
wider Internet. The concept of two main destination networks—Internet and Work—is central to the way
Connection Manager works.

Figure 9-1. Connection settings in Windows Mobile

If your device was supplied by a mobile operator, it should have available Internet connections set up for you.
We quickly step through the process of setting up a General Packet Radio Service (GPRS) network connection
manually. Tap Add A New Modem Connection under My ISP to open the Make New Connection Wizard, as shown
in Figure 9-2, which can help you configure your new connection.

Figure 9-2. The Make New Connection Wizard

In the wizard, first, you enter a display name for the connection, and then you select a device from the Select A
Modem drop-down list. In our example, we call the new connection My GPRS and configure it to use the Cellular
Line (GPRS) device. This device name is a special case because it uses the same cellular line device as a circuit-
switched call, but the settings required for a GPRS connection are different from the ones for a circuit-switched
call. Next, you enter an access point name (APN). The name will vary depending on your mobile operator; in this
example, we use .myapn. The final page of the wizard is for entering user name and password settings; these
are not used on most public GPRS services, but as with all the settings, you should check with your mobile
operator.

When there is at least one network connection configured, the Manage Existing Connections option appears on
the Tasks tab of the Settings dialog box. It displays a list of connections, as illustrated in Figure 9-3, and with it
you can edit and delete connections and set which connection to use as the default. You can select the Auto Pick
option to allow the system to choose a connection for you.

Figure 9-3. Managing existing connections

On the Tasks tab on the Connections page of the Settings dialog box, the My Work Network section contains a
similar option for defining dial-up connections. In this section, you can create a VPN connection that provides a
private channel over an existing public network connection.

The Advanced tab, shown in Figure 9-4, includes additional options. You can tap the Select Networks button to
select which connection group connects to which network. By default, these are set so that the My ISP
connections are the default for applications connecting to the Internet, and My Work Network connections are
used to connect to a private (intranet) network. You can tap the Dialing Rules button to define the way telephone
numbers are dialed. If your connections use a circuit-switched connection, you may need to set these up when
roaming on foreign networks. Telephone numbers stored with the connections must have a valid number,
including a dialing code, because generally network short codes do not work when roaming. The Exceptions
button is important when using Connection Manager because it helps you define whether a particular Uniform
Resource Locator (URL) resides on a private network or the Internet and therefore whether Connection Manager
can establish the correct connection.

Figure 9-4. Options on the Advanced tab of the Connections page in the Settings dialog box

By default, any host name that includes a period is considered to be a public address, but you can override that
behavior. The Work URL Exceptions page, shown in Figure 9-5, shows a list of currently stored exceptions. Tap
Add New URL to add a new entry to the list. The form to add a new exception, shown in Figure 9-6, shows
examples of the expected format. For example, you can add *.mydomain to ensure that exchange.mydomain is
interpreted as an intranet server and that the correct dial-up or VPN connection is established.

Figure 9-5. Work URL Exceptions page

Figure 9-6. Adding a new Work URL exception

All of the settings exposed on the Connections page can be deployed to the device through the Extensible
Markup Language (XML) configuration API. This configuration API is described in Chapter 17, "Developing with
Windows Mobile." These can be deployed either through a compiled deployment package, programmatically
through an API call, or by an operator over the air.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Using Desktop Passthrough

Microsoft ActiveSync is an application shipped for the desktop Windows operating system to support connecting
and synchronizing devices that run Windows Mobile. In the Windows Vista operating system, ActiveSync received
a face-lift and is now called the Windows Mobile Device Center—but it is still the same ActiveSync technology
under the hood. In this book, we use the term ActiveSync to mean both Windows Mobile Device Center in
Windows Vista and ActiveSync in earlier operating systems.

ActiveSync works over universal serial bus (USB), serial, or Bluetooth connections and provides a passthrough
network connection so that you can access the wider Internet using your desktop computer rather than establish
a GPRS or similar wireless connection.

ActiveSync uses the same concept of destination networks as Connection Manager when routing requests from
the device. From ActiveSync on your desktop, you can specify to which of these network types your computer is
connected in the Connection Settings dialog box, as shown in Figure 9-7. The default setting in the This
Computer Is Connected To box is Automatic, so any attempt to access either a Work or an Internet resource
should be passed through the ActiveSync connection. You are unlikely to need to change this setting. In the
preceding section, we discussed the standard rules for how Windows Mobile determines whether a URL is on a
Work network and how you can override this rule to fit your particular network topology.

Figure 9-7. The Connection Settings dialog box

There are no APIs to allow you to change these settings programmatically. On the device side, the connection is
invisible and appears just as if the device has an active Internet connection. Sometimes, for example, when you
want to upload certain information only when you're on a high-bandwidth connection with no costs to send data,
you may need to know if the device is connected through ActiveSync or another connection such as a mobile
phone network. In Windows Mobile 5.0, the Microsoft.WindowsMobile.Status.SystemState class contains the
ConnectionsDesktopCount property you can query to determine whether the connection is active. It might seem
odd to expose it in this way because the device can have only one desktop connection active at a time, but it
follows the pattern used for all other connection types.

On older devices, you can indirectly determine the type of connection by checking whether you can resolve the
host name used by ActiveSync. If you are connected by ActiveSync, the host name PPP_PEER will resolve to the
Internet Protocol (IP) address of the desktop, and the device will be assigned its own address in the same range.
When an ActiveSync connection is established, devices that run Windows Mobile and Windows CE close
connections to other networks, such as WiFi, GPRS, or Code-Division Multiple Access (CDMA).

public static bool DesktopPassthrough

{

 get

 {

 try

 {

 System.Net.IPHostEntry ihe =

System.Net.Dns.GetHostByName("PPP_PEER");

 return true;

 }

 catch

 {

 return false;

 }

 }

}

The technique of using the System.Net.Dns class is equally useful to look up the IP address of remote computers
over any IP-based network. As long as you can connect to a Domain Name System (DNS) server on the network
and you pass a valid host name, you can determine the IP address. If you are programming using sockets as
described in Chapter 8, "Networking," you must specify the IP address of the remote host to connect to, so you
must perform a DNS lookup on the remote host name to obtain the IP address.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Making Voice and Data Calls

Data connections such as ActiveSync and WiFi are essentially always on as long as their hardware is activated. If
you want to use a telephone network to send data using GPRS, CDMA, or Universal Mobile Telecommunications
System (UMTS), you must programmatically establish a connection when required. If you use an
HttpWebRequest or use Web Services code, the Microsoft .NET Framework runtime will attempt to establish an
Internet connection for you automatically; when using lower-level networking technologies, you must create the
connection yourself. Similarly, if as part of your application you want to initiate a voice call for the user, you must
know the appropriate native APIs to call because the Microsoft .NET Compact Framework doesn't have any
functionality for establishing voice connections.

Voice Calls

Windows Mobile provides a single high-level API call for starting a voice call on the user's behalf. Lower-level
control of the phone functionality is possible through further Microsoft Telephony Application Programming
Interface (TAPI) methods, a complete investigation of which is beyond the scope of this book.

Making a Voice Call on Windows Mobile 2003

The following code samples show the MakeCall method that wraps the PhoneMakeCall native API call and that
requires just the destination number and a flag to indicate whether to display a prompt to the user before
commencing dialing. First, you must define the native API and the structure used to pass it parameters.

using System.Runtime.InteropServices;

[DllImport("phone.dll", SetLastError = true)]
internal static extern int PhoneMakeCall(ref PHONEMAKECALLINFO ppmci);

internal struct PHONEMAKECALLINFO
{
public int cbSize;
public PMCF dwFlags;
[MarshalAs(UnmanagedType.LPWStr)]
public string pszDestAddress;
[MarshalAs(UnmanagedType.LPWStr)]
string pszAppName;
[MarshalAs(UnmanagedType.LPWStr)]
string pszCalledParty;
[MarshalAs(UnmanagedType.LPWStr)]
string pszComment;
}

internal enum PMCF
{
DEFAULT = 0x00000001,
PROMPTBEFORECALLING = 0x00000002,
}

Then you define a static wrapper method called MakeCall. Because many of the PHONEMAKECALLINFO members
are unused, you need to pass only the phone number and a Boolean flag to determine whether to prompt the
user to confirm before dialing.

public static void MakeCall(string number, bool prompt)
{
PHONEMAKECALLINFO pmci = new PHONEMAKECALLINFO();
pmci.cbSize = Marshal.SizeOf(pmci);
pmci.dwFlags = prompt ? PMCF.PROMPTBEFORECALLING : PMCF.DEFAULT;
 pmci.pszDestAddress = number;

 int result = PhoneMakeCall(ref pmci);

if (result != 0)
{
throw new System.ComponentModel.Win32Exception(result,
"Error calling PhoneMakeCall");
}
}

Making a Voice Call on Windows Mobile 5.0 and Later

Windows Mobile 5.0 introduces a managed API for making voice calls. By using the Phone class in the
Microsoft.WindowsMobile.Telephony namespace, you can call the Talk method, passing it the number to dial.
Therefore, you simply require two lines of code to make a voice call:

Microsoft.WindowsMobile.Telephony.Phone p = new
Microsoft.WindowsMobile.Telephony.Phone(); p.Talk(txtPhoneNumber.Text);

In Chapter 17, we investigate the Windows Mobile managed class libraries in detail.

Establishing Data Calls

Many applications require some kind of network connection while a device is away from a computer dock, and
there are a number of ways to establish a data connection programmatically. On devices that run Windows
Mobile (Pocket PC 2002 and later), the Connection Manager API is responsible for managing outgoing
connections. On devices that run Windows CE, you can use Remote Access Service (RAS) APIs to establish
dial-up and GPRS connections.

Connection Manager

Data connections can be established over connections such as GPRS. On devices that run Windows Mobile, a
dedicated API handles setting up connections and monitoring their state: Connection Manager. Although this is a
native code API, you can call it easily by using Platform Invocation Services (PInvoke) or a third-party wrapper
library.

Connection Manager handles the low-level connection over different network media: WiFi, GPRS, circuit-switched
data, and desktop passthrough, for example. Because the API manages connections across all applications in the
system, it can make better decisions about which connections to use based on what other applications have
requested. Connection Manager is built around the concept of destination networks and routes to those
destinations, which can be made up of one or more connections. For example, a device may connect to a private
Work network by first connecting to a public cellular packet-based network such as GPRS and then by
establishing a VPN connection to the Work network. After these connections are set up in Connection Manager,
you need to know only the destination network, and Connection Manager will manage the connection process to
get you connected to the chosen network.

There are a number of standard destination networks for Internet, Work, and Wireless Application Protocol (WAP)
networks. In most cases, your application will need to connect to either Internet or Work destinations. The
parameters for the connections are configured through the XML configuration API (discussed with examples in
Chapter 17).

The Connection Manager API supports notifications, which can be passed back to an application by window
messages to a supplied window handle (HWND). Alternatively, the application can query the status at any time
by using the ConnMgrConnectionStatus function. In the following code sample, we demonstrate how to establish
an Internet connection by using Connection Manager to create the most appropriate connection type. The sample
provides a very basic wrapper around Connection Manager. Third-party libraries (such as Mobile In The Hand at
www.inthehand.com/WindowsMobile.aspx and the OpenNETCF Smart Device Framework at
www.opennetcf.org/sdf/) are available and can provide more full-featured implementations.

Connection Manager uses several standard rules to determine whether a host name is in Internet format
(contains a period) or is a single host name. You can customize the exceptions to this rule through XML
configuration or the user interface. The ConnMgrMapUrl method is used to check your URL against these rules
and return the destination network identifier. We use the following wrapper function, which returns the list of
destination network identifiers.

public static Guid[] MapUrl(Uri url)
{
ArrayList al = new ArrayList();
Guid g;
int index = 0;
int hresult = 0;
while (hresult == 0)
{
hresult = ConnMgrMapURL(url.ToString(), out g, ref index);
if (hresult == 0)
{

al.Add(g);
}
}

return (Guid[])al.ToArray(typeof(Guid));
}

[DllImport("cellcore", SetLastError = true)]
private static extern int ConnMgrMapURL(string pwszURL, out Guid pguid,
ref int pdwIndex);

The Guid values returned are in priority order. You can create an instance of the ConnectionManager class and
with the first returned value call the EstablishConnection or EstablishConnectionSync methods. These methods
call the native ConnMgrEstablishConnection and ConnMgrEstablishConnectionSync methods, respectively. The
EstablishConnectionSync method waits until either the connection is established or the attempt fails after a
specified timeout. EstablishConnection starts the connection process and then returns control to your code. A
handle is maintained for the lifetime of the connection request. We store this in the ConnectionManager instance.

public void EstablishConnection(Guid destination)
{
ReleaseConnection();

connectionInfo.guidDestNet = destination;

int hresult = ConnMgrEstablishConnection(ref connectionInfo,
out handle);
}

The connection settings are inserted in the CONNMGR_CONNECTIONINFO structure, which is defined in managed
code as follows:

[StructLayout(LayoutKind.Sequential)]
internal struct CONNMGR_CONNECTIONINFO
{
public int cbSize;
public CONNMGR_PARAM dwParams;
public CONNMGR_FLAG dwFlags;
public ConnectionPriority dwPriority;
public int bExclusive;
public int bDisabled;
public Guid guidDestNet;
public IntPtr hWnd;
public uint uMsg;
public uint lParam;
public uint ulMaxCost;
public uint ulMinRcvBw;
public uint ulMaxConnLatency;
}

In the example, we prefill the structure with default values so that only the network globally unique identifier
(GUID) need be set for the connection request. You can request the current connection state at any time by
using the native ConnMgrConnectionStatus method, which in our sample is wrapped by the ConnectionStatus
property.

public ConnectionStatus ConnectionStatus
{
get
{
ConnectionStatus status = ConnectionStatus.Unknown;
if (handle != IntPtr.Zero)
{
int hresult = ConnMgrConnectionStatus(handle, out status);
}
 return status;
}
}
 [DllImport("cellcore", SetLastError = true)]
private static extern int ConnMgrConnectionStatus(IntPtr hConnection,
out ConnectionStatus pdwStatus);

Windows Mobile 5.0 exposes a number of properties in the Microsoft.WindowsMobile.Status.SystemState class
that describe the active network connections, both wired and wireless. We look at this class in more detail in
Chapter 17.

Remote Access Service

For dial-up, GPRS, and VPN connections, you can use the Remote Access Service (RAS) API. Once again, this is a
subset of a desktop Windows API. If your device supports Connection Manager, it is recommended that you do
not use RAS directly—use Connection Manager instead, which will start the appropriate connection for you,
handle connection sharing with other applications, share the connection state, and report it in the device user
interface.

The RAS API exposes methods to read the devices, phonebook entries, and active connections available on the
device. You must specify the name of a phonebook entry when calling the RasDial method to establish the
connection. In the sample code for this chapter on this book's companion Web site, we created a class called Ras
that exposes a property that returns all the names of available phonebook entries as an array of strings.

public static string[] Entries
{
get
{
int cEntries;
int len = Marshal.SizeOf(typeof(RASENTRYNAME));
IntPtr ptr = Marshal.AllocHGlobal(len);
Marshal.WriteInt32(ptr, Marshal.SizeOf(typeof(RASENTRYNAME)));
// The first call gives required buffer length.
int result = RasEnumEntries(null, null, ptr, ref len,
out cEntries);
ptr = Marshal.ReAllocHGlobal(ptr, (IntPtr)len);
// Call again with resized buffer.
Marshal.WriteInt32(ptr, Marshal.SizeOf(typeof(RASENTRYNAME)));
result = RasEnumEntries(null, null, ptr, ref len, out cEntries);
string[] names = new string[cEntries];
for (int iEntry = 0; iEntry < cEntries; iEntry++)
{
IntPtr p = (IntPtr)(ptr.ToInt32() +
(Marshal.SizeOf(typeof(RASENTRYNAME)) * iEntry));
RASENTRYNAME ren =
(RASENTRYNAME)Marshal.PtrToStructure(p,
typeof(RASENTRYNAME));
names[iEntry] = ren.szEntryName;
}

Marshal.FreeHGlobal(ptr);

return names;
}
}

The RASENTRYNAME structure is defined as follows:

internal struct RASENTRYNAME
{
public int dwSize;
[MarshalAs(UnmanagedType.ByValTStr, SizeConst=21)]
public string szEntryName;
}

After you know the name of the connection to use, you can use the RasDial method. In the sample code, the Dial
method wraps the RasDial code, and instead of just returning the handle, it returns an instance of the
RasConnection class, which stores the handle and exposes the HangUp method.

[StructLayout(LayoutKind.Sequential, CharSet=CharSet.Unicode)]
internal struct RASDIALPARAMS
{
public int dwSize;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=21)]
 public string szEntryName;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=129)]
 public string szPhoneNumber;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=49)]
 public string szCallbackNumber;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=257)]
 public string szUserName;

 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=257)]
 public string szPassword;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=16)]
 public string szDomain;
}

[DllImport("coredll", SetLastError = true)]
private static extern int RasDial(IntPtr dialExtensions,
string phoneBookPath, ref RASDIALPARAMS rasDialParam, int NotifierType,
IntPtr notifier, out IntPtr pRasConn);

The strings in the native RASDIALPARAMS struct are defined as inline character arrays rather than as string
pointers. The size constants are taken from the structures definition in the ras.h header. Therefore, the
MarshalAsAttribute must be applied to enforce this behavior. We look at marshalling structures in detail in
Chapter 14, "Interoperating with the Platform."

Dial extensions are not supported in Windows CE and the phonebook is not stored in the file system, so the first
two parameters to RasDial are ignored. The RASDIALPARAMS structure is used to pass all the settings. In this
example, we do not use notifications, so the only other argument used is the handle, which is populated on
success. On failure, the method returns one of the RAS error codes defined in the raserror.h header file in the
software development kit (SDK) for your platform.

public static RasConnection Dial(string name, string username,
string password, string domain)
{
IntPtr handle;
RASDIALPARAMS rdp = new RASDIALPARAMS();
rdp.dwSize = Marshal.SizeOf(rdp);
rdp.szEntryName = name;
rdp.szDomain = "*";
rdp.szUserName = username;
rdp.szPassword = password;
rdp.szDomain = domain;
int result = RasDial(IntPtr.Zero, null, ref rdp, 0, IntPtr.Zero,
out handle);

if (result != 0)
{
throw new System.ComponentModel.Win32Exception(result,
"Error establishing connection");
}

return new RasConnection(handle);
}

Microsoft patterns & practices Network Monitor Application Block

The Microsoft patterns & practices Mobile Application Blocks introduced in Chapter 1, ".NET Compact
Framework—a Platform on the Move," contain a Network Monitor Application Block that works on devices running
Windows Mobile 5.0 and later. The Network Monitor Application Block makes it easy to get information about the
physical network connections. Internally, it uses the Connection Manager API and the SystemState managed
class, but it exposes a simple object model to request information about the state of network connectivity on the
device and exposes events you can hook to be notified about changes in the active network.

It is important to note that the block doesn't actually contain functionality to establish a connection; it merely
monitors the status. You need to add references to your project to both the Configuration and Connection Monitor
blocks. The Network Monitor block uses the Configuration Application Block to read settings from the config file,
where you define the relative price of each type of network connection. An example config file may look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="Connections"
type="Microsoft.Practices.Mobile.ConnectionMonitor.Configuration.ConnectionSettingsSec
tion, Microsoft.Practices.Mobile.ConnectionMonitor" />
 </configSections>

 <Connections>
 <ConnectionItems>
 <add Type="CellConnection" Price="8"/>
 <add Type="NicConnection" Price="2"/>
 <add Type="DesktopConnection" Price="1"/>
 </ConnectionItems>
 </Connections>

</configuration>

In your application code, you create an instance of ConnectionMonitor based on the configuration settings you
have provided. The classes are contained in the Microsoft.Practices.Mobile.ConnectionMonitor namespace.

private ConnectionMonitor _cnMonitor =
ConnectionMonitorFactory.CreateFromConfiguration();

The ConnectionMonitor class exposes a single event called ActiveNetworkChanged, which occurs when a
connection is opened or closed. Therefore, when you handle the event, you must determine whether the device is
connected and use the ActiveNetwork and ActiveConnection properties to find out about the currently active
connection method.

The ConnectionMonitor also exposes two collections—Connections and Networks—that contain all the available
connections and network types supported on the device. All the Connections items returned contain the Price
property so that you can decide whether to send data over the currently active network connection. See the
documentation supplied with the Mobile Client Software Factory for more information. As with the rest of the
application blocks, the full source code is available.

Tip

If your application uses Web Services, you can use the Disconnected Service Agent
Application Block to handle the dispatch of Web service calls, taking into account
the state of network connectivity and queuing messages if no network is available.
The Disconnected Service Agent uses the Network Monitor Application Block to get
information about network availability, and it calls Connection Manager to establish
a connection when a network becomes available.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Enabling and Disabling Adapters

Radios use power, and the battery power on a mobile device is a valuable resource. On consumer devices, which
radios are active is a decision that rests with the user, but for enterprise line-of-business applications running on
custom or ruggedized hardware, frequently the application developer is responsible for turning network adapters
on or off. For example, your application may be used by users who visit public buildings. If the application runs
in kiosk mode so that standard features to control radios built into the operating system are not available, you
may have to build into the application some way for users to turn off the radios, perhaps when they enter a
building such as a hospital where you must turn off cell phones and WiFi. This section explains how to turn wide
area network (WAN), WiFi, and Bluetooth radios on and off.

Cellular Phones

Low-level phone functionality on a device is controlled through the native Telephony API (TAPI), which is a
subset of TAPI as present in desktop versions of Windows for controlling modems and phone devices. A detailed
look at TAPI is outside the scope of this book, and because it is a native API, it requires either numerous PInvoke
definitions or a commercial wrapper library.

TAPI works on the basis of having a handle to an individual line device. Additionally, a number of Extended TAPI
methods perform cellular-specific operations such as registering with a network provider and changing the status
of the device. It is these operations that can be used to disable the phone hardware, putting it into the so-called
flight mode. First, you must open a TAPI session and then obtain details of available line devices until you find
the one that represents the cellular radio; it is named Cellular Line. Open this line, and then call the Extended
TAPI methods on that line. Finally, you must remember to release these handles to free resources after you are
finished working with TAPI. To use these TAPI methods, you must also define a number of structures and
enumerations in managed code. The following code shows the necessary definitions:

[DllImport("coredll", SetLastError = true)]

internal static extern IntPtr GetModuleHandle(string lpModuleName);

//TAPI

[DllImport("coredll", SetLastError = true)]

internal static extern int lineInitializeEx(out IntPtr lphLineApp,

IntPtr hInstance, int lpfnCallback, string lpszFriendlyAppName,

out int lpdwNumDevs, ref int lpdwAPIVersion,

ref LINEINITIALIZEEXPARAMS lpLineInitializeExParams);

public struct LINEINITIALIZEEXPARAMS

{

public int dwTotalSize;

public int dwNeededSize;

public int dwUsedSize;

public LINEINITIALIZEEXOPTION dwOptions;

public IntPtr handle;

public int dwCompletionKey;

}

public enum LINEINITIALIZEEXOPTION

{

USECOMPLETIONPORT = 0x00000003,

USEEVENT = 0x00000002,

USEHIDDENWINDOW = 0x00000001,

}

[DllImport("coredll", SetLastError = true)]

internal static extern int lineShutdown(IntPtr hLineApp);

[DllImport("coredll", SetLastError = true)]

internal static extern int lineGetDevCaps(IntPtr hLineApp, int dwDeviceID,

int dwAPIVersion, int dwExtVersion, byte[] lpLineDevCaps);

[DllImport("coredll", SetLastError = true)]

internal static extern int lineOpen(IntPtr hLineApp, int dwDeviceID,

out IntPtr lphLine, int dwAPIVersion, int dwExtVersion,

int dwCallbackInstance, LINECALLPRIVILEGE dwPrivileges,

LINEMEDIAMODE dwMediaModes, IntPtr lpCallParams);

internal enum LINECALLPRIVILEGE

{

NONE = 0x00000001,

MONITOR = 0x00000002,

 //OWNER = 0x00000004,

}

[Flags()]

internal enum LINEMEDIAMODE

{

INTERACTIVEVOICE = 0x00000004,

}

[DllImport("coredll", SetLastError = true)]

internal static extern int lineClose(IntPtr hLine);

The Extended TAPI functions control cellular-specific features, and these methods are exposed from the
Cellcore.dll file. They define functions that are not relevant to an ordinary wired phone device, such as the ability
to turn the radio equipment on and off and to register or unregister with an available mobile operator. All of
these methods require a standard TAPI line handle that is obtained from the lineOpen method. These four
functions and their associated enumerations are defined in the following sample.

[DllImport("cellcore", SetLastError = true)]

internal static extern int lineSetEquipmentState(IntPtr hLine, LINEEQUIPSTATE dwState);

internal enum LINEEQUIPSTATE : int

{

MINIMUM = 0x00000001,

//RXONLY = 0x00000002,

//TXONLY = 0x00000003,

//NOTXRX = 0x00000004,

FULL = 0x00000005,

}

internal enum LINERADIOSUPPORT : int

{

OFF = 0x00000001,

ON = 0x00000002,

UNKNOWN = 0x00000003,

}

[DllImport("cellcore", SetLastError = true)]

internal static extern int lineGetEquipmentState(IntPtr hLine,

out LINEEQUIPSTATE lpdwState, out LINERADIOSUPPORT lpdwRadioSupport);

[DllImport("cellcore", SetLastError = true)]

internal static extern int lineRegister(IntPtr hLine,

LINEREGMODE dwRegisterMode, string lpszOperator, int dwOperatorFormat);

internal enum LINEREGMODE

{

AUTOMATIC = 0x00000001,

}

[DllImport("cellcore", SetLastError = true)]

internal static extern int lineUnregister(IntPtr hLine);

You have created a Telephony class that includes all these definitions and a public property to activate and
disable the phone. The constructor opens a TAPI session and reads the details of available line devices. When a
line device named Cellular Line is found, the index is stored and the line is opened, obtaining a line handle.

public Telephony()

{

int numDevices;

int version = 0x20000;

LINEINITIALIZEEXPARAMS initParams = new LINEINITIALIZEEXPARAMS();

initParams.dwTotalSize = Marshal.SizeOf(initParams);

initParams.dwOptions = LINEINITIALIZEEXOPTION.USEEVENT;

//initialize tapi—negotiates API version and returns number of devices

int result = lineInitializeEx(out hLineApp, GetModuleHandle(null), 0,

"Chapter9", out numDevices, ref version, ref initParams);

int cellularLineIndex = 0;

//Loop through the devices looking for the cellular line.

for(int thisDevice = 0; thisDevice < numDevices; thisDevice++)

{

byte[] caps = new byte[Marshal.SizeOf(typeof(LINEDEVCAPS))+256];

BitConverter.GetBytes(caps.Length).CopyTo(caps,0);

result = lineGetDevCaps(hLineApp, thisDevice, 0x020000, 0, caps);

//length of the null-terminated line name

int namelen = BitConverter.ToInt32(caps, 32);

//offset in the buffer of the line name

int nameoffset = BitConverter.ToInt32(caps,36);

//Get the line name.

string lineName = System.Text.Encoding.Unicode.GetString(caps,

nameoffset, namelen);

//Strip the trailing null if present.

int nullIndex = lineName.IndexOf('\0');

if (nullIndex > -1)

{

lineName = lineName.Substring(0, nullIndex);

}

//If cellular line, store the index and leave the loop.

if (lineName == "Cellular Line")

{

cellularLineIndex = thisDevice;

break;

}

}

//Open a handle to the cellular line.

result = lineOpen(hLineApp, cellularLineIndex, out hLine, version, 0, 0,

LINECALLPRIVILEGE.NONE , LINEMEDIAMODE.INTERACTIVEVOICE,

IntPtr.Zero);

}

With this handle to the cellular line, you can then call the Extended TAPI functions to activate flight mode. This is
wrapped up in the PhoneEnabled property.

public bool PhoneEnabled

{

 get

 {

 LINEEQUIPSTATE state;

 LINERADIOSUPPORT radio;

 lineGetEquipmentState(hLine, out state, out radio);

 if (state == LINEEQUIPSTATE.FULL)

 {

 return true;

 }

 return false;

 }

 set

 {

 if (value)

 {

 lineSetEquipmentState(hLine, LINEEQUIPSTATE.FULL);

 lineRegister(hLine, LINEREGMODE.AUTOMATIC, null, 0);

 }

 else

 {

 lineUnregister(hLine);

 lineSetEquipmentState(hLine, LINEEQUIPSTATE.MINIMUM);

 }

 }

}

Two steps are required to activate the phone. First, you set the hardware status to full functionality, and then
you call lineRegister, which automatically registers with a cellular provider. This function returns instantly,
although the registration may take up to 30 seconds. The status icon in the notification area shows the state of
the mobile network because signal strength is shown only when the device is registered to a network. You have
used a lot of complex PInvoke code to use these TAPI methods; the techniques of platform interop are described
in more detail in Chapter 14, "Interoperating with the Platform."

WiFi

The situation with WiFi adapters is not quite as simple. Depending on the specific platform, the device may or
may not support a high-level API such as the Microsoft Wireless Zero Configuration (WZC); otherwise, you must
configure adapters at the driver level. Some device manufacturers provide their own API for controlling their
wireless local area network (LAN) hardware. Although there isn't a documented way of activating and disabling
the WiFi device, the very worst case scenario is to provide a link to the Wireless Manager tool from your own
application. Wireless Manager is supported on devices that run Windows Mobile 5.0 and can be started by using
the Process class:

Process.Start("\\Windows\\wrlsmgr.exe",null);

Wireless Manager is a simple tool you can use to toggle the state of all the wireless features of the device, as
shown in Figure 9-8.

Figure 9-8. The Wireless Manager tool

Bluetooth

Working with Bluetooth on devices that run Windows CE is complicated by the fact that the device manufacturer
can use a Bluetooth software stack of its choice. Different stacks have different programming models and not all
have a freely available software development kit. Microsoft ships a Bluetooth stack implementation in Windows
CE that is used in many devices that run Windows Mobile. The Bluetooth software stack provided with Windows
CE exposes two API calls for changing the Bluetooth radio state. The shared source 32feet library (32feet.net)
mentioned in Chapter 8 includes radio functionality for the Microsoft Bluetooth stack.

Because you must use only two API functions to get or set the status of the radio, we use a sample to show how
you can wrap the APIs in your own code. The radio can be in one of three states, Off, Connectable, and
Discoverable. These are defined in the code sample in the RadioMode enumeration. The difference between
Connectable and Discoverable is that Connectable powers up the hardware but the device is not visible to new
devices, so it can be used only with remote devices that have already paired and know the unique device
address. Discoverable responds to remote devices doing a device lookup. The following sample shows a property
to wrap these two native methods to control the radio mode.

Using System.Runtime.InteropServices;

public static RadioMode Mode

{

 get

 {

 RadioMode val;

 int result = BthGetMode(out val);

 if(result!=0)

 {

 throw new System.ComponentModel.Win32Exception(result,

 "Error getting Bluetooth radio mode");

 }

 return val;

 }

 set

 {

 int result = NativeMethods.BthSetMode(value);

 if(result!=0)

 {

 throw new System.ComponentModel.Win32Exception(result,

 "Error setting BluetoothRadio mode");

 }

 }

}

[DllImport("BthUtil.dll", SetLastError=true)]

public static extern int BthSetMode(RadioMode dwMode);

[DllImport("BthUtil.dll", SetLastError=true)]

public static extern int BthGetMode(out RadioMode dwMode);

public enum RadioMode

{

 PowerOff,

 Connectable,

 Discoverable,

}

It is then very easy to change the state at any time by setting this property, for example:

BluetoothRadio.RadioMode = RadioMode.Connectable;

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

SMS Interception

Windows Mobile 5.0 introduces a set of managed APIs, one of which is a class capable of intercepting incoming
Short Message Service (SMS) messages that match a rule of your choosing. This functionality is contained in the
Microsoft.WindowsMobile.PocketOutlook.MessageInterception namespace. A rule consists of a property, a
comparison type, and a string keyword or phrase. You can use either the message body or sender property for
your rule, and the comparison is a member of the MessagePropertyComparisonType enumeration. You can set up
a comparison rule to match messages beginning or ending with a specific phrase or messages containing the
phrase in any location. When a matching message is received, you can then access the message properties, such
as sender and body text, from your code.

The MessageInterceptor allows you to use SMS as a messaging transport in your application with no input from
the user. You can register your rule so that even if your application is not currently running on the device, the
system will launch it, allowing you to process the message. The rule must be registered with an identifier unique
to your application. The identifier is stored in the registry, so must not contain any path characters. In this
example, we use Chapter9, and it just so happens that this is also the keyword we use in the rule, but the two
do not have to be the same. Because there are separate constructors for the MessageInterceptor class,
depending on whether you are first setting up your rule or loading an existing saved rule, you should call the
IsApplicationLauncherEnabled method to determine which constructor to use, as demonstrated by the following
code in the Load event of the main application form.

private void Form1_Load(object sender, EventArgs e)
{
if(MessageInterceptor.IsApplicationLauncherEnabled("Chapter9"))
{
//Load existing settings.
mi = new MessageInterceptor("Chapter9");
}
else
{
//Set up rule and register with application id "Chapter9".
mi = new MessageInterceptor(InterceptionAction.NotifyAndDelete);
mi.MessageCondition = new MessageCondition(MessageProperty.Body,
MessagePropertyComparisonType.StartsWith, "Chapter9");

string appPath =
Assembly.GetExecutingAssembly().GetName().CodeBase;
mi.EnableApplicationLauncher("Chapter9", appPath);
}
mi.MessageReceived +=
new MessageInterceptorEventHandler(mi_MessageReceived);
}

An important item to note is the call to EnableApplicationLauncher. Besides persisting the rule in the registry for
future use, it also stores the application path so that when a matching SMS message is received the system can
automatically start your application and process the message. The last statement of this code sets up an event
handler that is called each time a matching message is received. The method receives a
MessageInterceptorEventArgs object that contains details of the message. Because the message is of the type
Message, from which the SmsMessage is derived, you must cast it to the SmsMessage type to access all of the
message properties. In this example code, we simply display the message body to the user.

void mi_MessageReceived(object sender, MessageInterceptorEventArgs e)
{
MessageBox.Show(((SmsMessage)e.Message).Body, "SMS Received");
}

Your application could do all manner of processing on this message using either string methods or regular
expressions to parse the contents. You are limited only by your own imagination and the 160-character limit on
an SMS message. You can use concatenated messages to send larger messages that are broken down into

multiple SMS messages and reassembled before the event is raised containing the entire message contents.
This, of course, incurs additional costs because each section is billed as a single message. You may also find that
not all SMS sending mechanisms support concatenated messages. Windows Mobile and most other modern
consumer handsets will support this, but some Internet SMS gateways do not.

Tip

When you test your application using the device emulators, you can send a
loopback SMS by using the fake phone number 14250010001. This allows you to
test your interception code without incurring real network charges.

In Chapter 17, we look at the task of sending outgoing SMS messages.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

In this chapter, we looked at the task of establishing a network connection to send and receive information. We
discussed how ActiveSync, or Windows Mobile Device Center in Windows Vista, establishes a passthrough
Internet connection that you can use when docked. For devices that run Windows Mobile, we discussed how
Connection Manager provides a unified API for managing and prioritizing connection requests. We also looked at
the lower-level RAS API used to establish connections on devices running Windows CE. Finally, we discussed
using SMS as a means of sending and receiving application data. In Chapter 17, we revisit this topic with a more
detailed look at the Windows Mobile managed libraries.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 10. Security Programming for Mobile Applications

In this chapter:

Implementing Good Security 356

Storing Credentials and Other Secrets Securely 360

Encrypting Data 374

Securing Network Connections 386

Validating User Input 392

Perimeter Security: Securing Access to the Device 394

Signing Applications 397

Mobile devices are easily lost or stolen. If a device contains data that is valuable to your business, loss of a
mobile device can be a disaster. No one wants a device containing customer information or details of user names
and passwords required for authentication to the company's systems to fall into the hands of a competitor or an
attacker.

In some code samples in other chapters of this book, database passwords or user credentials are shown
hard-coded—a necessary evil so that the real purpose of the sample is not obscured by code required to protect
this sensitive information. Needless to say, hard-coding of secrets is very bad practice, so this chapter starts by
discussing some methods you can use to store sensitive information securely.

Security programming is a field that many perceive to be difficult. If you start from a blank page, it undoubtedly
is, but fortunately you can use a number of packaged solutions to make implementation of a secure system
easier. This chapter walks you through using the Mobile Configuration and Mobile Password Authentication
Application Blocks from the Microsoft patterns & practices Mobile Client Software Factory. These application
blocks make user authentication and encryption of secrets quite simple. Of course, a solution built using the
Mobile Configuration and Mobile Password Authentication Application Blocks will not be appropriate in all cases,
so the chapter goes on to describe how to use symmetric and asymmetric encryption algorithms and how to
generate hash tokens.

Finally, you should remember that one technique that contributes to good security is to implement defense in
depth. Put as many obstacles as you can between your attackers and their goal, which means using a
combination of secure design, application development, and device management and configuration. This book is
aimed at application developers, so most of this chapter discusses topics of interest to that audience. However,
the last section talks about perimeter security—configuration and management practices you can employ to
prevent attackers from gaining access to the device in the first place—and about how to configure Microsoft
Windows Mobile security policy to harden the device against certain forms of attack.

Implementing Good Security

Security is not something you bolt onto a solution after you have finished coding the interesting bits. Of course,
most developers know this, and yet security is still too often considered only as an afterthought. You must
consider security in the early stages of your design process to ensure that security requirements are gathered
along with the functional requirements of your application and that you perform reviews of your design and your
code from a security perspective.

Performing Security Reviews

You should always perform a security review of your code as a mandatory component of your code review
process. Some things that you should look for include unvalidated user input; weak user authentication and
authorization for accessing resources on Web servers; unsecured network connections; hard-coded user names,
passwords, and other secrets; unencrypted sensitive data that is accessible to outsiders; and storing sensitive
information on the device (either in memory or in persistent storage) longer than is absolutely necessary. On a
more general level, ensure that your code checks return values from every function call and takes appropriate
action. Attackers can take advantage of situations where code they are attacking does not check status returns

—think of it as slipping something through while you are not looking. If the code is robust in this way, it is much
harder to attack.

Much work has been done over the last few years in defining a repeatable process you can use to perform
effective security reviews and in integrating security into the development life cycle. One process is called threat
modeling, which breaks the security review process into six steps:

1. Identify the valuable assets in your solution that you must protect.

2. Create an architecture overview.

3. Decompose the application architecture that you created in step 2, identifying trust boundaries (that is,

areas where security requirements differ) and identifying how data flows between them.

4. Identify the threats that could affect the application, keeping the goals of an attacker in mind.

5. Document the threats.

6. Rate the threats and prioritize them, considering the potential consequences if an attacker were able

to exploit each threat to compromise your application.

The objective of this process is to uncover weaknesses in design and implementation and to direct your efforts
toward addressing the most serious weaknesses. You must repeat this security review process at various times
throughout the lifetime of your project to keep security concerns at the top of your agenda. One book that will
help you adopt this technique and other good security practices is The Security Development Lifecycle by Michael
Howard and Steve Lipner (Microsoft Press, 2006).

Why You Should Not Hard-Code Secrets

In Chapter 7, "Exchanging Data with Backend Servers," one example explains how to use Simple Object Access
Protocol (SOAP) headers to pass user credentials across to a Web service. It includes the following sample code
that creates an instance of a Web service proxy and calls the Authenticate Web method of the Web service,
passing an AuthHeader object containing a user name and password in the SOAP headers:

private void invokeIt()

{

 // Create a proxy for the Web service.

 SOAPheaderService ws = new SOAPheaderService();

 // Create the AuthHeader object for the SOAP header.

 AuthHeader hdr = new AuthHeader();

 hdr.Username = "andy";

 hdr.Password = "P455w0rd";

 // Set the AuthHeader SOAP header to our AuthHeader object instance.

 ws.AuthHeadervalue = hdr;

 // Call the Web method.

 bool response = ws.Authenticate();

}

In Chapter 7 and elsewhere in this book, we warn against hard-coding credentials in this way and refer you to
this chapter to find out how to store credentials properly.

Why is it wrong to hard-code credentials? Because Microsoft .NET Framework compilers compile your code not to
architecture-dependent machine code but to Microsoft intermediate language (MSIL), which is a
CPU-independent set of instructions that can easily be translated to native code at run time by a just-in-time
(JIT) compiler. MSIL is optimized for efficient compilation by the JIT compiler but makes no effort toward
securing your code or obscuring its purpose. You can take any .NET dynamic-link library (DLL) or executable and
decompile it with a tool such as Lutz Roeder's Reflector (www.aisto.com/roeder/dotnet/) to reveal the original
source code—not formatted exactly as it was first written but in a format that is functionally equivalent (note
that you can use a tool such as Reflector to discover the code that exists in the Microsoft Base Class Libraries,
which is useful for learning how to write class libraries). You may think that you could institute secure
distribution procedures to prevent your compiled code from falling into the wrong hands, but this is impossible to
police and does not constitute an effective security policy.

This issue is not limited to managed code. Passwords and other secrets you put in native modules can be just as
easily located in the string table. Even if binary data such as a globally unique identifier (GUID) or something
similar is used and obfuscated in the data section, simple entropy search tools can find such secrets very quickly.

Understanding Good—and Bad—Techniques for Hiding Secrets

So, if hard-coding secrets is no good, how should you hide secrets from attackers? Here is a list of the techniques

that are commonly used, some of which are just plain wrong:

Hard-code the secret, but obfuscate the code. Microsoft Visual Studio 2005 comes with the
community edition of Dotfuscator (find it at <drive>:\Program Files\Microsoft Visual Studio 8\Application
\PreEmptive Solutions\Dotfuscator Community Edition), which you can use to protect your intellectual
property. It modifies the MSIL so that it functions the same way but substitutes symbolic names for
variable names and performs other modifications. As a result, if you then decompile the MSIL with a tool
such as Reflector, the resulting code is very difficult to understand (and hence to steal). However, this is
not a security tool. Obfuscation cannot change the values of constants, so your hard-coded secrets are still
there, still stored in variables, and they can still be discovered by a determined attacker.

Conceal the secret hidden inside some other block of code. So you think that defining a byte array
containing lots of seemingly random bytes, reading it in code into a stream, converting it to a string, and
then reading characters 5 to 20 (or some similarly silly attempt at concealment) constitutes security? Your
attacker would end up helpless on the floor with laughter.

Store it in the registry. Unencrypted? You might as well paint your secrets in big letters on a billboard.
The registry is not a secure store for secrets. An attacker who gets hold of your device can connect it to a
computer where Visual Studio 2005 is installed and use the Remote Registry Editor tool to look at what is
stored there, or the attacker could download and install a registry editor program on the device. If you can
prevent attackers from accessing the device by using a strong power-on password, you can make it
difficult for attackers to get access to data stored on the device, including that stored in the registry,
although it is still not impossible. (See the section titled "Perimeter Security: Securing Access to the
Device" later in this chapter for more information.)

Store it encrypted in the registry or in a config file. Now you are getting there. However, you must
have the code in your application to decrypt the stored data. Encryption algorithms do not have to be kept
secret because these algorithms are well understood, and their strength comes from rigorous examination
by the cryptography community to validate their efficacy and confirm their unbreakability. However,
encryption algorithms require as input an encryption key, along with the data to be encrypted or
decrypted, which most definitely must remain a secret. We have seen supposedly secure applications in
which the secret data is stored encrypted in a config file, but the key used to decrypt it is hard-coded into
the application. This type of coding constitutes only a deterrent that might stop the casual observer of the
config file from learning your secret but does not deter the determined attacker.

If you can introduce another secret, such as by requiring the user to enter a password from which you can
derive the decryption key, this constitutes a secure solution.

Ask the user to enter it every time. In some circumstances, this might be a solution. In fact, this is
what you do every time you log on to your desktop computer that runs the Microsoft Windows operating
system—you enter your user name and password to authenticate yourself to the system and gain access
to your account. The SqlClient example program described at the beginning of Chapter 7 requires the user
to enter the user name and password to pass to Microsoft SQL Server.

Later in this chapter, we discuss how you can use a user-entered password to create an encryption key
that is used to decrypt stored secrets. Often, this is the basis of a security solution if combined with the
encryption techniques described later in this chapter. If you use this technique, you must consider the
following issues: how often you ask the user for the password so that it does not become an irritation, how
you handle the situation when users forget the password, and whether you should force the user to
reauthenticate periodically—after all, a mobile device application can often run for days or weeks, so it is
no good getting users to enter the secret just once at the beginning and never to ask them again. What if
the device is lost or stolen?

Bear in mind that keeping the original password in memory introduces a weakness where a malicious
application could search your process memory at run time and extract the data. Instead, as explained
later in this chapter, use the password to generate your encryption key or a hash (a hash is a
cryptographically derived token for clear text data that cannot be decoded to reveal the original text) right
away, and then lose the password—clear screen fields and overwrite the memory that contains the original
password.

Good Security Requires User Input

If you read the preceding list carefully, you will come to the inescapable conclusion that the best thing you can
do is ask the user directly for the secret or store the secret encrypted and ask the user for a password from which
you can derive a decryption key to decrypt the secret. This raises other questions, such as follows:

If you deploy the application to multiple users, are all users required to use the same password? This
would be no good because, if the security is compromised and the password revealed, you would have to
recall all your devices, reencrypt the secured data using a new password, and securely distribute the new
password to all your users.

How do you distribute encrypted data, such as a config file containing encrypted data or an encrypted SQL
Server Compact Edition (CE) database, to perhaps thousands of devices but provide a way for users to
enter their own unique password to decrypt the data?

What if a user forgets his or her password? How do you reset the password? How do you validate the
user's password?

The answer to these questions is to use a combination of encryption techniques, as explained throughout the rest
of this chapter. The complete solution is surprisingly easy to implement, particularly if you use the application
blocks in the Mobile Client Software Factory, as explained in the next section.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Storing Credentials and Other Secrets Securely

Consider the following requirements for a fictional application: it stores data in a SQL Server CE database, and it
communicates with a Web service that authenticates users using Hypertext Transfer Protocol (HTTP) Basic
authentication. Your threat analysis has identified the following vulnerabilities:

The data in the database includes details of your company's customers, so must not fall into the hands of
your competitors.

The Uniform Resource Locator (URL) of the Web service and the credentials required to authenticate must
also be kept secret, so as to reduce the likelihood of an attacker trying to break into your backend
systems.

Data transmitted must be unintelligible to anyone who manages to intercept it while it travels across
public networks such as the Internet.

To mitigate these risks, you identify the following security requirements for your solution:

Data in the database will be encrypted.

The database password, the URL of the Web service, and the user name and password required for
authentication to the Web service will be stored encrypted in a config file.

Your application has many users. For ease of deployment, each device must have the same config file, so
your application must have a secure way of storing the decryption key.

Users of the application each will have their own user name and password that they must enter to start
using the application. Only when the user authenticates successfully will the data in the config file be
decrypted, the database opened, and the application become functional.

This list of security requirements looks as though it may be difficult to implement. Fortunately, the Microsoft
patterns & practices team addressed this scenario in the Mobile Application Blocks in the Mobile Client Software
Factory (MCSF). (See Chapter 1, ".NET Compact Framework—a Platform on the Move," for more information
about the MCSF and how to download it.) The Mobile Application Blocks expose an application programming
interface (API) that is easy to program and that hides the complicated cryptography code that underlies the
solution. The description of how to program these application blocks that follows is not a detailed explanation of
the underlying cryptography but more a discussion of the practical application of it. For readers who want to
understand more about cryptography programming, the section titled "Encrypting Data" later in this chapter
gives an introduction to symmetric and asymmetric cryptography. Interested readers are also advised to study
the source code of the Mobile Authentication Application Block, which ships with the MCSF.

Protecting Data in SQL Server CE Databases

You can easily accomplish the first requirement in the list, to encrypt the data in the database, without calling on
the services of the Mobile Application Blocks. You can apply a password to a SQL Server CE database and
optionally encrypt the database using SQL Server 2005 Management Studio or by right-clicking the database in
Server Explorer in Visual Studio 2005 and then clicking Database Properties. Select the Set password page, enter
the password in the New Password and Confirm Password boxes, and then, if you want encryption, select
Encrypt, as shown in Figure 10-1.

Figure 10-1. Setting a database password and database encryption

[View full size image]

SQL Server CE uses the MD5 algorithm for hashing and the RC4 algorithm for encryption.

To access a password-protected database, whether you have turned on encryption or not, simply specify the
database password in the connection string—but remember not to hard-code it!

private void OpenDatabase(string dbName, string password)
{
 // Connection string is:
 // Data Source="\My Documents\xyz.sdf"; password=pwd
 String connString = @"Data Source=""\My Documents\" + dbName +
 """; Password=" + password;
 SqlCeConnection connection = new SqlCEConnection(connString);
 ...
}

Tip

There is a downside to encryption: the computational effort it requires means that
application performance will suffer and battery life will be reduced. You can avoid
these consequences by moving critical data to a separate database and encrypting
only that database.

Encrypting a 500-megabyte (MB) database where critical data occupies only 1 MB is
overkill and wasteful of resources.

Programming a Secure Solution by Using the Microsoft patterns & practices

Application Blocks

The MCSF includes 10 different application blocks, three of which work together to offer the security framework
you need to implement the security requirements of the application.

Mobile Configuration Block Reads application configuration files

Mobile Authentication Block Includes methods for validating user name and password

Endpoint Catalog API to expose URLs and credentials stored in a config file

To use these application blocks in a solution, you must add a reference to the Mobile.Configuration,
Mobile.Authentication, and Mobile.EndpointCatalog assemblies provided in the MCSF folders, or copy the projects

for each of these application blocks into your own solution (the MCSF ships all the source code for the blocks), as
has been done for the ApplicationBlocksSecure sample application you can find in the downloadable code for this
chapter on this book's companion Web site.

Defining the Configuration File

The .NET Compact Framework version 2.0 does not include classes for reading application config files. The MCSF
includes the mobile Configuration Application Block to provide this capability, and when used with the mobile
Authentication Block, it also supports reading of encrypted sections in a config file.

The unencrypted configuration file looks something like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="Endpoints" type=
 "Microsoft.Practices.Mobile.EndpointCatalog.Configuration.EndpointSection
 ,Microsoft.Practices.Mobile.EndpointCatalog" />
 <section name="SystemSettings"
 type="MobileDevelopersHandbook.SystemSettingsSection,
 MobileDevelopersHandbook.ApplicationBlocksSecure"/>
 </configSections>

 <Endpoints>
 <EndpointItems>
 <add Name="ServerHost"
 Address="https://MyServer/SecureAppServices/Service.asmx"
 UserName="PDAUser" Password="PDAP@ssw0rd"/>
 </EndpointItems>
 </Endpoints>

 <SystemSettings>
 <SystemSettingsItems>
 <add Name="DatabasePassword" Value="M0bileP@ssw0rd" />
 </SystemSettingsItems>
 </SystemSettings>
</configuration>

The <configSections> element describes the classes that implement the configuration section handlers the
runtime uses to decode the other sections in the config file. The first child element inside the <configSections>
element specifies that the configuration section handler for the <Endpoints> section is defined in the
Microsoft.Practices.Mobile.EndpointCatalog assembly from the MCSF, but the <SystemSettings> section is a
custom section implemented just for this solution. In this application, you will use this custom section for storing
a named item and an associated value and you can see that the example listing just shown uses it to store the
value of the database password. Hence, the second child element in the <configSections> element that reads
<section name="SystemSettings" type="MobileDevelopersHandbook.SystemSettings-Section,
MobileDevelopersHandbook.ApplicationBlocksSecure"/> tells the runtime that the configuration section handler
for the <SystemSettings> section is in the MobileDevelopersHandbook.SystemSettingsSection type in the
MobileDevelopersHandbook.ApplicationBlocksSecure assembly (the name of the assembly file for this sample
program, which you can find in the downloadable code for this chapter on the book's companion Web site). The
code for the SystemSettingsSection configuration section handler is shown in Listing 10-1. For more information
about using the Mobile.Configuration Application Block and defining custom sections, see the MCSF
documentation.

Listing 10-1. Configuration Section Handler Definition

using System;
using Microsoft.Practices.Mobile.Configuration;

namespace MobileDevelopersHandbook
{
 public class SystemSettingsItemElement : ConfigurationElement
 {
 [ConfigurationProperty("Name", IsRequired = true)]
 public String Name
 {
 get { return (String)this["Name"]; }
 }

 [ConfigurationProperty("Value", IsRequired = true)]
 public String Value
 {
 get { return (String)this["Value"]; }
 }

 }

 public class SystemSettingsItemElementCollection :
 ConfigurationElementCollection
 {
 protected override ConfigurationElement CreateNewElement()
 {
 return new SystemSettingsItemElement();
 }

 protected override Object GetElementKey(ConfigurationElement element)
 {
 SystemSettingsItemElement e = (SystemSettingsItemElement)element;
 return e.Name;
 }
 }

 public class SystemSettingsSection : ConfigurationSection
 {
 [ConfigurationProperty("SystemSettingsItems")]
 public SystemSettingsItemElementCollection SystemSettingsItems
 {
 get
 {
 return
 (SystemSettingsItemElementCollection)(this["SystemSettingsItems"]);
 }
 }
 }
}

Encrypting the Configuration File

The next step is to create the encrypted sections in the config file. To help with that, the MCSF comes with a tool
called ConfigSectionEncrypt, which you can find (as a Visual Studio 2005 solution) by clicking Start, pointing to
All Programs, Microsoft patterns and practices, Mobile Client Software Factory, and then clicking Tools.

When you run the program, copy the text of a config file section that you want to encrypt onto the Section Xml
tab, as shown in Figure 10-2 for the <Endpoints> section, and then click Encrypt Section. The program encrypts
the clear text and displays the Encrypted Section tab, in which it displays the encrypted text. Copy the encrypted
text into your app.config, and then delete the clear text version. Repeat the exercise for any other sections you
want to encrypt, and after this is complete, your app.config should look something like the following code
sample:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="Endpoints" type=... />
 <section name="SystemSettings" type=.../>
 </configSections>

 <EncryptedSection name="Endpoints">AQAQNu3F... ...J2M+EN</EncryptedSection>
 <EncryptedSection name="SystemSettings">AQAQymI... ...8r7aR</EncryptedSection>
</configuration>

Figure 10-2. ConfigSectionEncrypt tool from the Mobile Client Software Factory

[View full size image]

The Key text box at the top of ConfigSectionEncrypt shows an encryption key, Base64 encoded, which is very
important to the whole system. It is an encryption key for use with the Rijndael symmetric encryption algorithm
—symmetric because exactly the same key is used for encryption as is used for decryption. (You can learn more
about encryption using symmetric algorithms later in this chapter in the section titled "Encrypting Using the AES
Symmetric Algorithm".) If you study the code for the tool, you'll find that the code that generates this key is as
follows:

using System.Security.Cryptography;
...
public static byte[] GenerateKey()
{
SymmetricAlgorithm algorithm = Rijndael.Create();
return algorithm.Key;
}

Advanced Encryption Standard

The Advanced Encryption Standard (AES) is the U.S. government–approved method for encrypting
sensitive but unclassified information by U.S. government agencies and is the de facto standard for
encryption in the private sector.

Encryption algorithms wear out in the sense that advances in computing power and encryption
technology mean that, over time, algorithms become easier to crack and hence less secure.
Previously, the U.S. government specification for encryption was the Data Encryption Standard
(DES), which was approved in 1976. However, in February 2000, a team of researchers using very
powerful computers cracked a DES key in 22 hours; by 2005, using modern computers, the time it
took to crack a 56-bit DES key had dropped to less than 5 minutes.

A stronger algorithm, Triple DES (or 3-DES) uses three DES keys, which means that it should be
secure enough to see us through the next security generation, which most experts agree will be the
next 15 to 20 years, although that could change if computing technology advances faster than
anticipated. Strong though 3-DES is, in 1999 the federal government started a process to identify
and approve a stronger replacement, one that offers sufficient security to protect data for the next
20 or 30 years.

The result was the selection of the Rijndael algorithm for AES, which became the required method
of encryption for the U.S. government in December 2001. AES is computationally more efficient
than 3-DES is, and it supports longer key lengths.

It's important to remember that there is no such thing as 100 percent encryption: a 64-bit key in
both 3-DES and AES can be cracked in around 70 days using modern computers. If you use a
256-bit key (which is not supported by 3-DES), the time required to crack it increases to 200 days,
which effectively makes it computationally infeasible to crack. (Figures were taken from
intelligrid.info/IntelliGrid_Architecture/New_Technologies/Tech_Confidentiality.htm.)

Creating User-Specific Encrypted Keys

Now you have a config file that contains sensitive data that has been encrypted using a key (which we call the
master key from now on) and that you can distribute with your application to all target devices. On the device,
you need to decrypt the encrypted data, for which you need exactly the same key that was used for encryption.
How do you put the encryption key on the device without revealing it to an attacker?

The answer is to assign a user name and password to each user, derive another encryption key from that user
name and password, and then use that user-specific encryption key to encrypt the master key. You must transfer
the encrypted version of the master key onto the device by some method; this can be as simple as using an
unsecured Web service—the data is encrypted, so it can be transferred over unsecure channels. On the device,
the user enters his or her user name and password, and those inputs are used to derive the user-specific
encryption key, which in turn is used to decrypt the encrypted master key.

This still sounds a little complicated, but fortunately the Mobile Application Blocks in the MCSF provide
easy-to-use APIs that make creating user-specific encryption keys quite simple. The first part of the process
happens on the server. The software you need is implemented in the ConfigSectionEncrypt tool that you used to
encrypt the config file sections. This tool offers options where you can enter the user name and password, and
then click the Encrypt Key button to display the encrypted version (in Base64 encoding) of the master Rijndael
key, as shown in Figure 10-3.

Figure 10-3. Encrypting the master key using an encryption key derived from the user name and

password

[View full size image]

When you click the button, the code that runs to create the encrypted key is as follows:

using System.Security.Cryptography;
using Microsoft.Practices.Mobile.PasswordAuthentication;
...
 public static byte[] EncryptKey(
 string username, string password, byte[] key)
 {
 using (RsaAesCryptographyProvider provider =
 new RsaAesCryptographyProvider(containerName))
 {
 PasswordIdentity identity =
 new PasswordIdentity(username, password, provider);
 Rijndael algorithm = Rijndael.Create();
 CryptographyBlock block =
 new CryptographyBlock(algorithm, identity.CryptoKey);
 return block.Encrypt(key, algorithm.IV);
 }
 }

This code creates an RsaAesCryptographyProvider instance, which is a class in the
Microsoft.Practices.Mobile.PasswordAuthentication namespace that handles much of the work required for

encryption and decryption. Its constructor takes a string parameter, which is the name of a key store where the
Cryptographic Service Provider (CSP; the underlying cryptography provider exposed by the operating system)
stores its keys; you should use an application-specific name for this. The RsaAesCryptographyProvider instance,
along with the user name and password, is passed to the constructor of a PasswordIdentity instance. To get a
cryptographic key derived from the user name and password, you get the CryptoKey property of the
PasswordIdentity class, and this key is passed to the constructor of a CryptographyBlock object, along with a
System.Security.Cryptography.Rijndael instance. The last line of this code uses the CryptographyBlock.Encrypt
method to encrypt the master key. In this way, you have encrypted the master key using a key derived from the
user name and password.

If you click the Encrypt Key button many times, you may notice something interesting. The encrypted key that is
displayed changes each time you click the button. That is because the Rijndael algorithm actually uses two
ingredients to encrypt data: an encryption key and an initialization vector (IV); an IV is otherwise known as a
seed. Notice that the call to CryptographyBlock.Encrypt takes two parameters: the data to be encrypted and an
IV. Each time you create an instance of the Rijndael class, which happens each time you run this method in the
code Rijndael algorithm = Rijndael.Create();, it generates a new IV. Introducing a different IV each time means
that the cipher text changes each time, which means that if you send a series of encrypted messages out over
the network that were created from the same clear text data, the cipher text will be different each time, which
makes it harder for an attacker who intercepts it to crack the encryption by looking for repeating patterns. It also
means that when you are ready to decrypt the cipher text, you need to know not only the encryption key but also
the IV that was used when the text was encrypted. If you study the code for the Cryptography.Encrypt and
Decrypt methods (included in the source code for the mobile Authentication Application Block), you can see that
the solution is to include the IV (unencrypted) at the beginning of the block of encrypted bytes, from where it
can be retrieved by the Decrypt method.

At first glance, storing the IV at the beginning of the block of encrypted bytes seems to offer little in the way of
security. After all, the attacker can find the IV there too. That is true, but what you are doing by using an IV (or
seed) is introducing another random ingredient into the encryption process. Rijndael is more usually used to
encrypt data to transfer between two entities, each of which possesses the same shared key. If these entities
exchange a series of messages but no seed is used, and some of the messages are identical, the cipher text will
also be identical; the attacker can gain information about the data by observing duplicates. If the same clear text
messages are encrypted and sent but a seed is used, the cipher text will be different, so this route of analysis is
blocked to the attacker. Revealing the seed to the attacker does not compromise the encryption because the
attacker still needs the shared key—as well as the seed—to decrypt the data.

In this sample application, you store the user names and the encrypted keys in an Extensible Markup Language
(XML) file, which looks something like the following (the XML file also includes an attribute called Token, which is
explained in the next section):

<?xml version="1.0" encoding="utf-8" ?>
<Users>
 <User Name="Bill"
 Token="AQAKK90fWdPpq+Umc4tTmwy9u61JD+nPEPu6Hlke"
 EncKey="AQAQbQR3QmZ1wUNfJI73gllp5tCt9gGjAn... ...04nl4thG+FvwL/Ng=="/>
 <User Name="Mary"
 Token="AQAYAVjIVA94wzLv2rXRRYSES14zJ3vjR2OFHrd4"
 EncKey="AQAQbqT2rGTFiwW/iZTBh85myiPHuu26eA0xuG99As... ...VgMPeaFoQ=="/>
 <User Name="Joe"
 Token="AQAsocb1MW6WiOV/bzj1yqehrYAKP05dWq808gF5"
 EncKey="AQAQXG+00D408eajDnmoJ/... ...LAMGZ0KS0YquZQ7RdI9N/MjA=="/>
</Users>

Notice that although the user name is included in clear text, the password is not, for obvious reasons. Only a
user who knows the correct password for the user name is able to decrypt the encoded key and hence decrypt
the configuration file. For simplicity, this file is included in the sample application as content, but in a real
application you could distribute it to clients using any of the techniques described in Chapter 7.

Creating Tokens for User Authentication

The code in the ConfigSectionEncrypt tool encrypts the master key, but that in itself is not sufficient for
authenticating users. You could derive a key from the user name and password that the user enters and then try
to decrypt the encrypted master key and the configuration file and see if the results made sense—but that is not
an efficient way of testing whether the correct user name and password were entered.

Instead, the mobile Password Authentication Application Block provides the AuthenticationToken class to help
with the process of authenticating users, which you use in two ways:

To create a hash token from the user name and password, which you transfer to the point of
authentication on the device (just as you do with the encrypted master key)

To perform authentication of a user name and password using an existing hash token

Even if you know the user name and the hash token, you cannot derive the password, so hash tokens are a good
way of passing a representation of users' credentials around a network without risk of exposing those credentials.

The code for creating the hash token is very simple. In the sample code for this chapter, in the

ApplicationBlocksSecure sample, you can find the desktop program UserTokens. This simple program includes
text boxes that accept the user name and password, and a button. When you click the button, the program
displays the user token. The code behind the button is very simple:

using Microsoft.Practices.Mobile.PasswordAuthentication;
...
 private void buttonShowToken_Click(object sender, EventArgs e)
 {
 using (RsaAesCryptographyProvider provider =
 new RsaAesCryptographyProvider("MobileDevelopersHandbook"))
 {
 PasswordIdentity identity = new PasswordIdentity(
 textBoxUsername.Text, textBoxPassword.Text, provider);
 AuthenticationToken token = new AuthenticationToken(identity);
 textBoxToken.Text = token.TokenData;
 }
 }

All you need to do is to include the user tokens in the XML user file (as shown previously), and the server-side
processing is complete.

Authenticating the User and Decrypting the Config File on the Device

On the device side, you must implement a login screen where the user can enter the user name and password,
such as the one shown on the left side of Figure 10-4.

Figure 10-4. Login screen and main form from the sample program

The code to authenticate the user and to decrypt the configuration file is quite simple, as shown in Listing 10-2.
This LoginForm class takes a reference to a Dictionary<string, string> in its constructor, and it returns the
decrypted information from the config file in this Dictionary. For simplicity (although not for efficiency!), this
example reads the contents of the Users XML file into a DataSet.

The code to authenticate the user in the AuthenticateUser method is very simple and uses the alternative
constructor to AuthenticationToken that takes an existing token, different from the one you used previously to
create the token initially. The method then calls the AuthenticationToken.Authenticate method, which takes as

parameters the user name and password the user entered on the login form, and also an instance of
RsaAesCryptographyProvider to handle the encryption duties. Internally, it then generates a new token from the
user name and password and checks that it matches the token you supplied. If this authentication succeeds, it
returns a PasswordIdentity object; otherwise, null.

Listing 10-2. Login Form That Authenticates the User and Decrypts the Configuration File

using System;
using System.Collections.Generic;
using System.Data;
using System.Windows.Forms;
using Microsoft.Practices.Mobile.PasswordAuthentication;
using Microsoft.Practices.Mobile.Configuration;
using System.Security.Cryptography;

namespace MobileDevelopersHandbook
{
 public partial class LoginForm : Form
 {
 private DataSet users;

 private Dictionary<string, string> configSettings = null;

 public LoginForm(Dictionary<string, string> settings)
 {
 InitializeComponent();

 configSettings = settings;
 }

 private void LoginForm_Load(object sender, EventArgs e)
 {
 Cursor.Current = Cursors.WaitCursor;
 try
 {
 // Get the user details from the Users.xml file.
 users = new DataSet();
 users.ReadXml(GetApplicationDirectory() + @"\Users.xml");
 }
 finally
 {
 Cursor.Current = Cursors.Default;
 }
 }

 private void menuItemSubmit_Click(object sender, EventArgs e)
 {
 for(int rowidx = 0; rowidx < users.Tables[0].Rows.Count; rowidx++)
 {
 DataRow userRow = users.Tables[0].Rows[rowidx];
 if ((string)userRow["Name"] == textBoxUsername.Text)
 {
 Cursor.Current = Cursors.WaitCursor;

 try
 {
 PasswordIdentity identity =
 AuthenticateUser((string)userRow["Token"]);
 if (identity != null && identity.IsAuthenticated)
 {
 // Success!! Decrypt the config file.
 DecryptSettings(
 identity, (string)userRow["encKey"]);

 //Close this modal dialog box.
 this.DialogResult = DialogResult.OK;
 }
 }
 finally
 {
 Cursor.Current = Cursors.Default;
 }
 }
 }
 // Show the login failed message.

 labelIncorrect.Visible = true;
 }

 private PasswordIdentity AuthenticateUser(string userToken)
 {
 using (RsaAesCryptographyProvider provider =
 new RsaAesCryptographyProvider("MobileDevelopersHandbook"))
 {
 // Create AuthenticationToken using existing token.
 AuthenticationToken token =
 new AuthenticationToken(userToken);
 PasswordIdentity identity = token.Authenticate(
 textBoxUsername.Text, textBoxPassword.Text, provider);
 // return result — caller checks Authenticated property to
 // see authentication result
 return identity;
 }
 }

 private void DecryptSettings(
 PasswordIdentity identity, string userEncryptedConfigurationKey)
 {
 // Obtain the user's key.
 byte[] userKeyBytes = identity.CryptoKey;

 // Create an instance of the CryptographyBlock class.
 SymmetricAlgorithm symmetric = Rijndael.Create();
 CryptographyBlock block =
 new CryptographyBlock(symmetric, userKeyBytes);

 // Get the user's encrypted configuration key.
 byte[] configKeyBytes =
 Convert.FromBase64String(userEncryptedConfigurationKey);

 // Decrypt the key
 byte[] configurationKey = block.Decrypt(configKeyBytes);

 // Create a configuration provider to decrypt the config file.
 RijndaelConfigurationProvider configProvider =
 new RijndaelConfigurationProvider(configurationKey);

 // Assign the new instance of the RijndaelConfigurationProvider
 // class to the ConfigurationManager.
 ConfigurationManager.ProtectedConfigurationProvider
 = configProvider;

 // Finally, use the GetSection method of the ConfigurationManager
 // to retrieve the section you want.
 String sectionName = "SystemSettings";
 SystemSettingsSection configSection =
 ConfigurationManager.GetSection(sectionName)
 as SystemSettingsSection;

 // Store the decrypted data in the settings collection.
 foreach (SystemSettingsItemElement item in
 configSection.SystemSettingsItems)
 {
 configSettings.Add(item.Name, item.Value);
 }
 }

 private string GetApplicationDirectory()
 {
 return System.IO.Path.GetDirectoryName(
 System.Reflection.Assembly.GetExecutingAssembly()
 .GetModules()[0].FullyQualifiedName);
 }
 }
}

After the user is authenticated, you can retrieve the key created from the user name and password by getting
the PasswordIdentity.CryptoKey property. Use the PasswordIdentity.CryptoKey property to decrypt the master
key, and use the decrypted master key to decrypt the configuration file. The code to do all this is in the
DecryptSettings method in Listing 10-2 and is fairly self-explanatory.

Handling Changed or Forgotten Passwords

This system is easy to extend to handle a change password facility. On the device, you could run code similar to
that already discussed in this chapter to decrypt the encrypted master key using the user name with the old
password and then encrypt it again using the new password. You must use some method of sending the
encrypted master key for that user to the server, such as a Web service call, so that the copies of user-specific
keys held by your administration functionality are kept in sync.

If a user forgets his or her password, you must set a new one. The password is not stored anywhere in this
system, and you cannot decode the user token to discover it. Instead, your administrator must set a new
password for that user, generate a new user token and encrypted master key, and then get those onto the device
either by simple file transfer (as in the sample used in this chapter) or by a Web service call or some other data
synchronization method.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Encrypting Data

The Microsoft patterns & practices mobile Password Authentication and mobile Configuration Application Blocks
provide encryption and authentication services that meet the needs of many line-of-business mobile applications.
However, they do not provide solutions for every security and encryption need. In this section, we discuss how to
use the System.Security.Cryptography namespace directly to perform common encryption tasks.

Encrypting Using the AES Symmetric Algorithm

A symmetric algorithm is one in which exactly the same key is used for encryption and decryption. The most
commonly used symmetric algorithm is Rijndael, which is the algorithm selected for the U.S. government
Advanced Encryption Standard (see the sidebar titled "Advanced Encryption Standard" earlier in this chapter).

The following example shows how to use Rijndael to save data in encrypted form in a file on the device or a
storage card. The sample application, called Encryption, which is included in the downloadable samples for this
chapter on the book's companion Web site, implements a personal encryption facility for a user. With this
program, you can enter some text on-screen, and then the user can tap the Save menu button that prompts the
user for a password, derives an encryption key from the password, encrypts the text, and saves it. The next time
you run the program, the user can tap the Restore menu button, which prompts the user for the password again,
derives the key from the password, and decrypts the cipher text for display on the screen (see Figure 10-5).

Figure 10-5. Screens from the Encryption sample that encrypts text using Rijndael

[View full size image]

Deriving the Key from a Text String

The first piece of interesting code in this sample is used to derive an encryption key from the password text the
user enters. The Rijndael algorithm requires a key that is 128, 160, 192, 224, or 256 bits in length (although
only the 128-, 192-, and 256-bit key sizes are specified in the AES). No methods in any of the managed classes
in System.Security.Cryptography can help you derive a key of a specified length from variable-length text, so
you must make native function calls using Platform Invocation Services (PInvoke) into the native Crypto API.
These calls are complex, and rather than explain them here, the sample takes the pragmatic approach of using
the CryptNativeHelper.GetPasswordDerivedKey method in the mobile Password Authentication Block, which
already wraps the necessary calls to create a 256-bit key. If you are interested in the exact logic, examine the
source code for the mobile Password Authentication Block.

using Microsoft.Practices.Mobile.PasswordAuthentication;
...
 private byte[] DeriveKeyFromPassword(string password)
 {
 byte[] key;
 using (RsaAesCryptographyProvider provider =

 new RsaAesCryptographyProvider("DevelopersHandbook"))
 {
 CryptNativeHelper crypto = new CryptNativeHelper(provider);
 key = crypto.GetPasswordDerivedKey(password);
 }

 return key;
 }

Encrypting

Using the key, the sample calls the following method to do the encryption:

using System.IO;
using System.Security.Cryptography;
...
 /// <summary>
 /// Encrypts a string using Rijndael/AES symmetric key algorithm
 /// </summary>
 /// <param name="enckey">The encryption key</param>
 /// <param name="plainText">String to be encrypted</param>
 /// <returns>Encrypted data as a Base64 encoded string</returns>
 private string EncryptData(byte[] key, string plainText)
 {
 // Get the bytes to encrypt.
 byte[] plaintextByte =
 System.Text.Encoding.Unicode.GetBytes(plainText);

 // Create a Rijndael instance.
 RijndaelManaged rijndael = new RijndaelManaged();

 // Set encryption mode.
 rijndael.Mode = CipherMode.ECB;
 rijndael.Padding = PaddingMode.PKCS7;

 // Create a random initialization vector.
 rijndael.GenerateIV();
 byte[] iv = rijndael.IV;

 string encodedText = "";

 // Define memory stream that will be used to hold encrypted data.
 MemoryStream memStrm = new MemoryStream();

 // Write the IV length and the IV.
 memStrm.Write(BitConverter.GetBytes(iv.Length), 0, 4);
 memStrm.Write(iv, 0, iv.Length);

 // Create a symmetric encryptor.
 using (ICryptoTransform encryptor =
 rijndael.CreateEncryptor(key, iv))
 {
 // Create a CryptoStream to write to the output file.
 CryptoStream cryptStrm = new CryptoStream(
 memStrm, encryptor, CryptoStreamMode.Write);

 // Write the content to be encrypted.
 cryptStrm.Write(plaintextByte, 0, plaintextByte.Length);
 cryptStrm.FlushFinalBlock();

 // Convert encrypted data from memory stream into byte array.
 byte[] cipherTextBytes = memStrm.ToArray();

 // Close the streams.
 memStrm.Close();
 cryptStrm.Close();

 // Convert encrypted byte array into a base64-encoded string.
 encodedText = Convert.ToBase64String(cipherTextBytes);
 }
 return encodedText;
 }

The method generates an initialization vector (IV) and stores it unencrypted in the first few bytes of the block of

encrypted data, preceded by 4 bytes that give the length of the IV. (We discussed IVs earlier in this chapter in
the section titled "Creating User-Specific Encrypted Keys.") To actually perform the encryption, you create an
encryptor (as an ICryptoTransform instance) by calling the RijndaelManaged.CreateEncryptor(key, iv) method:

using (ICryptoTransform encryptor = rijndael.CreateEncryptor(key, iv)) {...}

Pass the resulting ICryptoTransform object, along with the output stream where you want to write the result, to
the constructor of a CryptoStream object:

CryptoStream cryptStrm =
 new CryptoStream(memStrm, encryptor, CryptoStreamMode.Write);

Then simply write the clear text (as a byte array) to the CryptoStream, which encrypts it using the encryptor and
writes it to the output stream:

cryptStrm.Write(plaintextByte, 0, plaintextByte.Length);

Decrypting

Unsurprisingly, the method that does the decryption is very similar:

using System.IO;
using System.Security.Cryptography;
...
 private string DecryptData(byte[] key, string encryptedData)
 {
 string retStr = "";

 // Create a symmetric decryptor.
 RijndaelManaged rijndael = new RijndaelManaged();
 rijndael.Mode = CipherMode.ECB;
 rijndael.Padding = PaddingMode.PKCS7;

 // Convert the ciphertext into a byte array.
 byte[] cipherTextBytes = Convert.FromBase64String(encryptedData);
 // Define memory stream to use to read encrypted data.
 MemoryStream inStream = new MemoryStream(cipherTextBytes);

 // Read the IV length from the buffer.
 int ivLength = BitConverter.ToInt32(cipherTextBytes, 0);
 // Reposition to after 'length' bytes in stream.
 inStream.Position = 4;

 // Read the IV from the input stream.
 byte[] iv = new byte[ivLength];
 inStream.Read(iv, 0, ivLength);

 using (ICryptoTransform decryptor =
 rijndael.CreateDecryptor(key, iv))
 {
 // Create a CryptStream to read from the file.
 CryptoStream cryptStrm = new CryptoStream(
 inStream, decryptor, CryptoStreamMode.Read);

 // Create another MemoryStream for the output.
 MemoryStream memStrm = new MemoryStream();
 byte[] buffer = new byte[2048];
 int totalbytes = 0;
 do
 {
 int bytesRead = cryptStrm.Read(buffer, 0, buffer.Length);
 if (bytesRead == 0)
 break;
 memStrm.Write(buffer, 0, bytesRead);
 totalbytes += bytesRead;
 } while (true);

 // Write the content to be encrypted.
 memStrm.Flush();
 memStrm.Seek(0, SeekOrigin.Begin);

 // Get the string from the bytes you read.

 retStr = System.Text.Encoding.Unicode.GetString(
 memStrm.GetBuffer(), 0, totalbytes);
 cryptStrm.Close();
 }
 return retStr;
 }

The main difference from the encryption processing is that the length of the IV is retrieved from the first 4 bytes,
and then the IV is retrieved. After that, you create a decryptor (as an ICryptoTransform instance) using
Rijndael.CreateDecryptor(key, iv) and pass the input stream containing the encrypted bytes and the decryptor to
the constructor of a CryptoStream, which this time you open using CryptoStreamMode.Read. You then read the
encrypted bytes using the CryptoStream, which decrypts the stream and writes the clear text to an output
buffer.

Encrypting Using the RSA Asymmetric Algorithm

The symmetric encryption algorithm just discussed is quite efficient, in encryption terms. Generally, if you want
to encrypt large blocks of data, you should always use a symmetric algorithm such as Rijndael. However,
symmetric algorithms have the disadvantage of using the same key for both encryption and decryption. If you
want to send encrypted data over a network, how can you send the key to the recipient without it being revealed
to an attacker? (Note that this is one of the problems that Secure Sockets Layer (SSL) solves; SSL is the
underlying protocol that you use when you access https:// URLs.)

The answer is to encrypt the symmetric key using an asymmetric algorithm and send it to the recipient first so
that both sides have the same symmetric key, and then subsequent encryption can proceed using the symmetric
key. An asymmetric algorithm, such as RSA (which stands for the initials of the algorithm's inventors, Rivest,
Shamir, and Adleman), uses a pair of keys, one called the private key, the other the public key. With asymmetric
algorithms, anything encrypted using the public key can be decrypted only by using the private key, and
anything encrypted using the private key can be decrypted only by using the public key. When you generate a
key pair, you keep the private key secure—it is for your personal use only—but the public key you distribute
widely; publish it on the Internet if you want. If you know only the public key, you cannot derive the private key.

Now if someone—say his name is Bill—wants to send someone else—call her Alice—a secure message, all Bill has
to do is encrypt the message using Alice's public key. The encrypted message can be decrypted only by the
private key, which is held only by Alice. If Bill and Alice want to exchange a lot of encrypted data, Bill can
generate a symmetric key (a Rijndael key), encrypt it using Alice's public RSA key, and then send the symmetric
key to her. Alice decrypts the symmetric key using her private RSA key and waits for the next message from Bill,
which will be a block of data encrypted using the symmetric key. Figure 10-6 shows how this process works.

Figure 10-6. Exchanging a shared key securely using a public–private key pair

[View full size image]

Asymmetric encryption is slow compared to symmetric—1,000 times slower—and the computational effort
required will drain a device battery quickly. These are the reasons why asymmetric key encryption is usually used
for symmetric key exchange rather than for bulk encryption.

Using key pairs for authentication

Because of the properties of asymmetric keys, you can do digital signatures. Remember that Alice's
public key is public property and can be used by many individuals. So how can Alice be sure that it
is really Bill that is sending her the symmetric key encrypted using her RSA public key? Bill must
generate his own pair of RSA keys and send his public key to Alice. Now, after he encrypts the
symmetric key by using Alice's public key, he encrypts it again, but this time by using his private
key. When Alice receives the data, she decrypts it using Bill's public key; if that succeeds, she
knows the data must have come from Bill because only Bill can have encrypted it using his private
key. She then decrypts the data again using her private key to obtain the symmetric key to use for
subsequent message exchanges.

This description is somewhat of a simplification, but it explains at a high level how to use RSA to
support encryption and authentication.

Generating RSA Keys

We can illustrate one use of RSA by extending the personal encryption example used earlier in this chapter. In
that example, the user is asked for a password that is used to derive the key for encrypting and later decrypting
the data. What if the user forgets his or her password? How could you access the encrypted data?

One solution is to use the public key of an RSA key pair to encrypt the user's password and save it to a file. If the
user forgets the password, you can transfer the file to a desktop Windows computer, where you can run a
program that uses the private key from the RSA key pair to decrypt the file. In the sample code for this chapter
on the book's companion Web site, you can find the DesktopKeyUnlocker project, which implements the desktop
component of this solution, and the EncryptionWithAdminUnlock project, which is the same as the Encryption
sample used earlier and with the addition of the encryption of the user-entered password using the RSA public
key.

The desktop component, DesktopKeyUnlocker, has two functions:

To generate a key pair and print out the public key as an XML string

To use the private key to decrypt some data that has been encrypted using the public key

The following code is used to fetch an existing key pair from a named key container (which is a name you specify
for a user-specific logical container) or to generate a new key pair if the key container does not already exist. The
key pair is persisted by a Windows component called the Cryptographic Service Provider (CSP); the exact
location is implementation dependent but is usually the Windows registry:

using System.Security.Cryptography;
...
 private string GetRSAKeyPair(string containerName)
 {
 //Create a CryptoServiceProvider Parameter object.
 CspParameters cspParams = new CspParameters();
 // Set the key container name that has the RSA key pair.
 cspParams.KeyContainerName = containerName;
 //Set the CSP Provider Type PROV_RSA_FULL.
 cspParams.ProviderType = 1;
 //Set the CSP Provider Name
 cspParams.ProviderName =
 "Microsoft Enhanced Cryptographic Provider v1.0";

 //Create a new RSA provider, pass CspParameters to the constructor.
 //If specified key container doesn't exist, creates a new key pair
 rsaprovider = new RSACryptoServiceProvider(cspParams);
 //Indicate that you would like the new key pair to be persisted in
 // the key container specified.
 rsaprovider.PersistKeyInCsp = true;

 //Return the PUBLIC key info.
 return rsaprovider.ToXmlString(false);
 }

In the sample program, you call this method like this:

 string publicKey = GetRSAKeyPair("DesktopKeyUnlockerContainer");

When you run the program, it displays the public key, as shown in Figure 10-7. The first time you run it, it
generates the key pair, but on subsequent runs, it retrieves the persisted key pair and so displays the same
public key.

Figure 10-7. The DesktopKeyUnlocker program displaying the public key from the RSA key pair

[View full size image]

Keeping Private Keys Secure

As you have probably realized already, keeping private keys secure is absolutely essential. On desktop Windows,
that task is made easier by the RSACryptoServiceProvider, which persists key containers in a user-protected
private key store; only the Windows user who created the keys can access the private key store because the
master key used to unlock the store is derived from the Windows user credentials. You can also use the .NET
Framework 2.0 System.Security.Cryptography.ProtectedData class, which wraps a native API called Data
Protection API (DPAPI) and gives you an alternative way of securing private keys (and other secure data) in a
user-specific (or machine-specific) secure store.

On Windows Mobile, the underlying platform does not provide the same level of support for this kind of
functionality because users do not log onto a Windows CE–based device using Windows user credentials. You
must use an encryption technique such as that described in the section titled "Encrypting Using the AES
Symmetric Algorithm" earlier in this chapter. As an alternative, you can use the implementation of the
ProtectedData class in the OpenNetCF Smart Device Framework (see Chapter 1 for details of how to get the
OpenNetCF Framework). As mentioned earlier, ProtectedData wraps DPAPI, which on a device encrypts the data
using a key it generates that is specific to the device on which you execute the code. This means that it can be
decrypted only on the device where the data was encrypted, which removes the risk of off-device attacks.

Encrypting Using the RSA Public Key

In the sample application EncryptionWithAdminUnlock, the public key is stored in an XML file:

<?xml version="1.0" encoding="utf-8" ?>
<RSAKeyValue>
 <Modulus>ziN2zzR3OXnn7w+... ...o2aCq+ObHeZF41fl8=</Modulus>
 <Exponent>AQAB</Exponent>
</RSAKeyValue>

The complete code to read the key and modulus from the XML file, to encrypt the string, and to save it in a file is
shown in Listing 10-3. The SavePassword method creates an instance of RSACryptoServiceProvider, imports an
RSAParameters instance that has been set up with the key and modulus of the public key by the
ReadPublicKeyXML method, and then calls the RSACryptoServiceProvider.Encrypt method to perform the
encryption. The result is saved to a file.

Listing 10-3. EncryptPasswordRSA Class to Encrypt Using an RSA Public Key

using System;
using System.Text;

using System.Security.Cryptography;
using System.IO;
using System.Xml;

namespace Encryption
{
 class EncryptPasswordRSA
 {
 public void SavePassword(string cleartext)
 {
 RSACryptoServiceProvider rsaProvider =
 new RSACryptoServiceProvider();
 //Create a new instance of RSAParameters.
 RSAParameters RSAKeyInfo = new RSAParameters();
 RSAKeyInfo = ReadPublicKeyXML(RSAKeyInfo);

 //Import key parameters into RSA.
 rsaProvider.ImportParameters(RSAKeyInfo);

 //Encrypt the supplied data.
 byte[] cipherText = rsaProvider.Encrypt(
 new UnicodeEncoding().GetBytes(cleartext), false);

 //Save the ciphertext.
 using (System.IO.StreamWriter sw =
 new System.IO.StreamWriter(GetApplicationDirectory() +
 @"\UserKeyCipher.txt", false))
 {
 sw.Write(Convert.ToBase64String(cipherText));
 sw.Flush();
 }
 }

 private RSAParameters ReadPublicKeyXML(RSAParameters RSAKeyInfo)
 {
 // Read the public key from the XML file by using a reader.
 using (Stream stm = File.OpenRead(GetApplicationDirectory() +
 @"\PublicKey.xml"))
 {
 XmlTextReader reader = new XmlTextReader(stm);
 // Search the XML for the required element.
 string ev = reader.NameTable.Add("RSAKeyValue");
 while (reader.Read())
 {
 if (reader.LocalName == ev)
 {
 // Process it!
 int eventDepth = reader.Depth;
 reader.Read();
 while (reader.Depth > eventDepth)
 {
 if (reader.MoveToContent() == XmlNodeType.Element)
 {
 switch (reader.Name)
 {
 case "Modulus":
 RSAKeyInfo.Modulus =
 Convert.FromBase64String(reader.ReadString());
 break;
 case "Exponent":
 RSAKeyInfo.Exponent =
 Convert.FromBase64String(reader.ReadString());
 break;
 }
 }
 reader.Read();
 }
 }
 }
 }
 return RSAKeyInfo;
 }

 private string GetApplicationDirectory()
 {
 return System.IO.Path.GetDirectoryName(

 System.Reflection.Assembly.GetExecutingAssembly().
 GetModules()[0].FullyQualifiedName);
 }
 }
}

Decrypting Using the RSA Private Key

The decryption function takes place in the DesktopKeyUnlocker program. In the sample scenario, you can help a
mobile device user who has forgotten his or her password. Without knowing the password, the user can no longer
view the data encrypted earlier, but the user can reveal the password he or she used by copying the file saved by
the code in Listing 10-3 over to the administrator's computer. Remember, this file was encrypted using the
public key of the administrator's key pair, and so can be decrypted only by the private key, which is known only
to the administrator.

The administrator must run the DesktopKeyUnlocker program again. As it starts up, it retrieves the RSA key
details from the key store using the GetRSAKeyPair method, as described in the section titled "Generating RSA
Keys" earlier in this chapter. Then the administrator enters the path to the encrypted password file copied from
the device, and the code in the textBoxFilePath_TextChanged method (shown just below) calls the
RSACryptoServiceProvider.Decrypt method to decrypt the contents of the file using the private key and displays
the result at the bottom of the screen (see Figure 10-8).

Figure 10-8. Decrypting using the RSA private key—the test program output

[View full size image]

The code to do the decryption is in the TextBox.TextChanged event handler in the sample and is as follows
(remember that the RSAProvider object has already been initialized by the GetRSAKeyPair method shown
previously):

 private void textBoxFilePath_TextChanged(object sender, EventArgs e)
 {
 if (System.IO.File.Exists(textBoxFilePath.Text))
 {
 string cipherBase64 =
 System.IO.File.ReadAllText(textBoxFilePath.Text);
 byte[] cipherText = Convert.FromBase64String(cipherBase64);

 // Decrypt the file using the PRIVATE key.
 byte[] decipheredText =
 rsaprovider.Decrypt(cipherText, false);

 //Display the deciphered message.
 labelResult.Text =
 new UnicodeEncoding().GetString(decipheredText);
 }
 }

This simple example demonstrates how to use RSA encryption. You can use this technique for encrypting data
you send to recipients over an otherwise unsecure channel. You can also authenticate the sender, as described
earlier in the sidebar titled "Using Key Pairs for Authentication."

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Securing Network Connections

Your Windows Mobile–powered applications will frequently use HTTP to access network resources. If you use Web
Services or the WebRequest/WebResponse classes described in Chapter 8, "Networking," data transfers take
place over the network using HTTP. (HTTP is also used for SQL Server CE Remote Data Access [RDA] and merge
replication.) You can encrypt data you transfer over the network using the RSA algorithm (for key exchange) and
Rijndael algorithm as explained earlier, although in many cases you would be better advised to take advantage of
Secure Sockets Layer (SSL).

SSL is a handshaking and encryption protocol that performs the key exchange and symmetric encryption for you
without you having to code anything yourself—apart from changing URLs to start with https://. However, on your
Web server you must have an X.509 server certificate, which is used to authenticate the Web server so that the
client (your program on the mobile device) knows that it is talking to the correct server and has not been tricked
by an attacker who has redirected requests to the target URL to its own server.

How you set up your Web server with a server certificate differs from server to server and is beyond the scope of
this book. For instructions on setting up Microsoft Internet Information Server (IIS) 6.0 with a secure server
certificate, search the IIS 6.0 Documentation page in Microsoft Windows Server 2003 documentation on the
Microsoft TechNet at www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS.

An X.509 server certificate contains a digital signature and a private–public key pair and can be used to
authenticate the server, but only if it has been issued by a trusted public body called a Certificate Authority (CA).
CAs are respected—and regulated—public companies such as VeriSign, GTE, and Thawte. They sell security
solutions, including server certificates. You must prove your identity to the CA before the CA will issue a server
certificate to you for a specific computer. All certificates they issue are "children" of that CA's root certificate and
contain data that identifies their parentage.

As part of the handshake process in SSL, the server presents its digital certificate (which has been encrypted
with the private key) and its public key to the client. SSL uses the data in the digital certificate to verify the
authenticity of the certificate. It does this by comparing certain attributes with those of the issuing CA's root
certificate, which must already be installed in the root certificate store on the device. Because the digital
certificate was encrypted using the private key, which is held only by the sender (the Web server), and was
issued by the CA, authenticity is established. If the certificate cannot be authenticated, a warning message is
issued if you are accessing the site using a browser, or a System.Net.WebException will be thrown if you are
accessing the server programmatically.

Tip

The Windows Mobile team at Microsoft has created a useful tool called
SSLChainSaver that helps troubleshoot problems with SSL and also allows easy
creation of an XML file you can use for provisioning certificates onto devices. See
blogs.msdn.com/windowsmobile/archive/2006/08/11/sslchainsaver.aspx for more
information.

Root Certificates Installed on a Windows Mobile–Powered Device

Verifiable third-party SSL certificates are issued by trusted root CAs that have a root store presence in Windows
Mobile–powered devices. By default, the following root certificates are installed on a device that runs Windows
Mobile 5.0:

Class 2 Public Primary Certification Authority (VeriSign, Inc.)

Class 3 Public Primary Certification Authority (VeriSign, Inc.)

Entrust.net Certification Authority (2048)

Entrust.net Secure Server Certification Authority

Equifax Secure Certification Authority

GlobalSign Root CA

GTE CyberTrust Global Root

GTE CyberTrust Root

Secure Server Certification Authority (RSA)

Thawte Premium Server CA

Thawte Server CA

Note that devices running Windows Mobile 5.0 that have the Adaptation Kit Update 2 (AKU2) update (Messaging
and Security Feature Pack) have the following additional root certificate installed:

http://www.valicert.com/

Note that original equipment manufacturers (OEMs) can choose to ship devices without all these root certificates,
and if you are an enterprise user who has complete control over the configuration of the devices you deploy in
your organization, you can remove them.

Certificate stores

Certificate stores contain the digital certificates of a mobile device. By default, Windows Mobile–
powered devices have the following set of certificate stores:

The ROOT store contains trusted root certificates that identify root Certificate Authorities.
The ROOT store typically contains certificates from a trusted public Certificate Authority. You
can view the contents of this store by using the Certificates function in Control Panel.

The CA store contains trusted intermediate certificates that identify intermediate Certificate
Authorities. You can view this store in Control Panel on Windows Mobile 6 but not on
Windows Mobile 5 or earlier, and by default, no certificates are installed in this store in
shipped devices.

The MY store contains the user's personal client certificates that are used for client
authentication to Web sites, the Microsoft Exchange Server, Secure/Multipurpose Internet
Mail Extensions (S/MIME), and so forth. You can view the MY store by using the Certificates
function in Control Panel.

Privileged Execution Trust Authorities and Unprivileged Execution Trust Authorities certificate
stores are used by the security loader (part of the Windows CE operating system that
assigns security trust levels to code modules when you run them) to control code execution.
If an executable can be chained to a certificate in either of these stores, it is considered
signed by the security loader and is assigned a trust level depending on the device security
policies. If a binary is signed using Microsoft Authenticode technology but cannot be chained
to a certificate in either of these stores, it is considered unsigned by the security loader (and
likely a message stating that will be displayed).

The SPC store governs .cab file installation. The .cab installer tries to chain the signature on
a .cab to a certificate in this store, following similar rules as described previously for other
binaries. All code execution certificates in the previous two stores should also be in this
store. For instance, if the device has the Mobile2Market (M2M) certificates, they will also be
in this store for application installation. Certificates in the SPC store contain an additional
property that indicates to the .cab installer what credential to use when installing the
application.

Using a Self-Signed Certificate

For most applications, it is recommended that you install a certificate issued by a Certificate Authority that the
device trusts. Alternatively, install a certificate issued by a company that is chained to an authority that the
device trusts.

However, a server certificate costs money, and if your application is only for internal use in an organization or is
in test phase, you can use a server certificate you issue yourself, called a self-signed certificate. On a computer
running Microsoft Windows Server 2003, it is quite easy to install Certificate Services, which sets you up as your
own CA. You can then create a server certificate.

For more information about self-signed certificates, see the topic "Issuing Your Own Server Certificates" on
Microsoft TechNet at www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/f72bde43-2f6a-
4424-a890-f25b6c41425f.mspx?mfr=true.

Validating a Server SSL Certificate in Code

If you are using a self-signed certificate on your Web server and you try to access a resource on the server using
Microsoft Pocket Internet Explorer on a device, you receive a warning security alert indicating there is a problem

with the site's security certificate, as shown in Figure 10-9.

Figure 10-9. Security warning issued because the server certificate cannot be chained back to a

root certificate on the device

This warning is issued because the certificate your server presents to the client to authenticate cannot be
chained back to any of the root certificates installed on the device. The security alert asks, "Do you want to
proceed?" You must click Yes to continue.

If you try to access a Web service on such a server, you get a WebException with the message "Could not
establish trust relationship with remote server," as shown in Figure 10-10.

Figure 10-10. Message displayed when a Web service call to a server secured with a self-signed

certificate fails with a WebException

One solution is to install the root certificate on your device, but this may be problematic if your device supplier
has set security policy that prevents you from doing this. (See the sidebar titled "Installing Root Certificates on a
Windows Mobile–Powered Device" later in this chapter.) The easier solution is to programmatically answer the
question, "Do you want to proceed?" You must define a class that implements System.Net.ICertificatePolicy,
which contains a single method, CheckValidationResult; return true from this to accept all server certificates.
Then set the static CertificatePolicy property of System.Net.ServicePointManager to an instance of your class
before calling the Web service, and the call will succeed. The code required is as follows:

using System.Windows.Forms;

using System.Net;

using System.Security.Cryptography.X509Certificates;

public class Form1: Form

{

 ...

 private void SetPolicyAndCallWebService()

 {

 System.Net.ServicePointManager.CertificatePolicy =

 new TrustAllCertificatePolicy();

 // Call method to call the SSL-secured Web service.

 CallSecureWebService();

 }

}

public class TrustAllCertificatePolicy : System.Net.ICertificatePolicy

{

 public TrustAllCertificatePolicy()

 { }

 public bool CheckValidationResult(ServicePoint servicepoint,

 X509Certificate cert, WebRequest req, int problem)

 {

 return true;

 }

}

Note that in the full .NET Framework 2.0, the System.Net.ServicePointManager.CertificatePolicy property is
obsolete, and instead you should define a callback on the
System.Net.ServicePointManager.ServerCertificateValidationCallback property (not supported in .NET Compact
Framework). On the full .NET Framework 2.0, use the following to achieve the same result:

System.Net.ServicePointManager.ServerCertificateValidationCallback =

 delegate { return true; };

Installing root certificates on a Windows Mobile–powered device

Often, installing a root certificate on a device running Windows Mobile 5 is quite problematic.
Getting the certificate is usually easy enough; for example, if you have installed Certificate Services
on a computer running Windows Server 2003, you can open http://{server}/certsrv, request the
server certificate, and save it as an X.509 certificate in a .cer file. You can then copy this .cer file
onto the device.

If your device is running Windows Mobile 6, the certificate installer is built into the platform so that
you can copy the .cer file to your device; just tap on it in File Explorer, and Windows Mobile will
install it. This approach usually works on Pocket PC devices running Windows Mobile 5 as well.
However, if your device is a Windows Mobile 5 Pocket PC Phone Edition or a Smartphone, this
probably will not work because the suppliers of such devices often ship them in a restricted
configuration; the exact behavior varies depending on who is the network operator and/or device
manufacturer. If you have a restricted device, you must use a utility program that itself has been
signed with an appropriate certificate that grants it the rights to install certificates. Some network
operators might provide such a utility to allow you to install a root certificate, so consult the
support services of your operator to find out. Some device manufacturers who supply phone-
enabled devices that are not locked to a particular phone network operator may also provide a
utility; at the time of writing, iMate, for example, supplies a utility to install root certificates on its
SP5 model Smartphone but not, curiously, for its JasJar Pocket PC Phone Edition device.

One technique—which I used successfully during the writing of this chapter—that may work with
one-tier devices, such as Pocket PCs, is to install a root certificate through a .cab file. (See the
section titled "One-Tier and Two-Tier Security" later in this chapter for more information about
device security configurations). For more information about how to do this, see the article titled
"Step-by-Step Guide to Deploying Windows Mobile-based Devices with Microsoft Exchange Server
2003 SP2" at www.microsoft.com/technet/solutionaccelerators/mobile/deploy/msfp_d.mspx.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Validating User Input

One of our favorite security maxims is "Never trust user input." Most other factors in your application are under
your control, but anything a user supplies crosses a security boundary and should be mistrusted until proved
benign.

We described a classic example of this in Chapter 7 when we discussed how a user could perform a SQL injection
attack. For example, with the SQL Server CE RDA SubmitSql method or classes in System.Data.SqlClient, you
can execute Transact-SQL (T-SQL) commands directly on a SQL Server database. You might construct the T-SQL
statement using code such as "UPDATE Cars SET Color ='" + TextBox1.Text + """, and then expect the user to
enter values such as Red, Blue, or Yellow.

What if the user enters: "Red'; DROP TABLE Cars --" Because SQL Server is quite happy to execute multiple
T-SQL statements delimited by a semicolon that you pass to it in a single string (something not supported by
SQL Server Compact Edition, incidentally), it will update the Cars table and then delete it!

Warning

Although the type of SQL injection attack described here using multiple T-SQL
statements affects only SQL Server, other forms of SQL injection attacks are
possible with SQL Server CE.

There are two ways of handling this kind of problem:

If you can limit user options to a known set of values, you can require the user to select from a list box or
combo box. In any case, limiting user options to given choices rather than allowing the user to type in a
value will probably result in a user interface (UI) that is cleaner and easier to use.

If you must allow free-form text entry, validate the text users enter. If you are expecting only one word to
be entered, you could use the following code to ensure that no punctuation is included:

 private bool IsValidWord(string input)

 {

 bool isValid = true;

 foreach (char c in input)

 {

 if (Char.IsLetterOrDigit(c))

 {

 isValid = false;

 break;

 }

 }

 return isValid;

 }

You can also achieve this kind of validation—and much more complicated pattern matching—by using regular
expressions. For example, the following code validates a name so that it includes only lowercase and uppercase
characters, spaces, and an apostrophe for names such as O'Dell, plus the point character. It also limits the
length of the field to 40 characters:

using System.Text.RegularExpressions;

...

 private bool IsValidName(string input)

 {

 Regex reg = new Regex(@"^[a-zA-Z'.\s]{1,40}$");

 return reg.IsMatch(input);

 }

For more information about crafting complex regular expressions, see the Regular-Expressions Web site at
www.regular-expressions.info/tutorial.html.

The preceding example validates the input to ensure that it is no longer than 40 characters. Remember that in
Windows Forms, you can also set the MaxLength property of the TextBox control to limit the number of
characters the user can enter.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Perimeter Security: Securing Access to the Device

So far in this chapter, we've discussed applications of encryption, including how to authenticate a user name and
password to protect access to your application and how to encrypt data in databases and files. We have also
discussed input validation. If you, the developer, have done your job properly, it really doesn't matter if the
device is lost or stolen, does it?

Because there's no such thing as perfect security, you must use defense in depth: Put many obstacles in front of
your attackers. If your devices run Windows Mobile, the first thing you should do is use the built-in power-on
password. This feature is disabled by default, and when activated you can choose between a simple four-digit
personal identification number (PIN) and a strong alphanumeric password—needless to say, the latter is
preferred.

Unfortunately, you cannot rely on users to keep the power-on password feature activated. In enterprise
applications, you should consider a remote management solution. A number of vendors sell remote management
solutions that you can use to enforce sign-on passwords and password complexity rules to deploy software onto
devices and to remotely wipe all data from the device should the device be lost or stolen.

Remote Management Using Exchange Server 2003 SP2 and the MSFP

The Messaging and Security Feature Pack (MSFP) is the name of an update to Windows Mobile 5.0 that activated
direct push e-mail to devices and certain remote management capabilities. It is also known as the AKU2 update
(AKU stands for Adaptation Kit Update, which is the name for a Windows Mobile operating system build that is
issued to device manufacturers). You need Exchange Server 2003 SP2 to use these capabilities.

You set security policies for all devices in your domain by using the Exchange System Manager. In Exchange
System Manager, under Global Settings in the Mobile Services Properties dialog box, you can set device security
settings, as shown in Figure 10-11. You can configure such settings as the minimum password length, the time
of inactivity on the device before the password screen is redisplayed, and the number of failed password
attempts allowed before the device is automatically wiped.

Figure 10-11. Device Security Settings dialog box in Microsoft Exchange System Manager

[View full size image]

Once set, these settings are propagated to the devices by direct push over HTTP in under 10 minutes or when
the device is next contactable. The next time the device owner performs e-mail synchronization, he or she is
required to confirm that Exchange Server enforces the new security settings, as shown in Figure 10-12.

Figure 10-12. Accepting Security Settings Update on the device

If the user loses the device or the device is stolen, an administrator can remotely wipe the device. The
administrator opens a Web management interface on the Exchange Server by browsing to http://{servername}
/mobileadmin. The Remote Wipe option opens the Remote Device Wipe page, where the administrator can select
the required device and then select to wipe it (see Figure 10-13). If the device is currently connected to the
mobile phone network, or the next time it does connect, it resets itself and returns to its factory state with all
applications and data removed. Remember, though, that the device will not be wiped until it connects to the
phone network, so you should not rely on this security measure alone to secure sensitive data on your devices.

Figure 10-13. Initiating a remote wipe

[View full size image]

In Exchange Server 2003, an administrator must initiate the wipe process, but in Exchange Server 2007, a user
can connect to a public Web page on your enterprise Web site and initiate the wipe. With this capability, the user
can respond more quickly to the event of a lost or stolen device rather than having to contact administrators to
initiate the wipe.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Signing Applications

Windows Mobile checks each and every executable module such as dynamic-link libraries (.dll) and executable
(.exe) files as they are loaded to validate that the code is signed, the signature is valid, and the signature
matches a recognized certificate installed on the device. Software installation through .cab files is also protected
by this process with a separate certificate store, and a revocation process is available on the device to block
execution and installation of rogue applications.

Code signing provides two guarantees: that the code has not been modified since signing and that the owner of
the code can be identified. How it does this is similar to how authenticity for X.509 server certificates is
established, as described earlier. A CA issues the X.509 certificates used for code signing, which are derived from
the root certificate (which provides a way for the authenticity of a certificate to be checked by verifying whether
its parent certificate is one of the root certificates in the root store on the device). When you code-sign an
application, the public certificate details, including the public key, are attached to the code module as a resource,
and then a hash is generated from the whole code module, encrypted with the private key and attached to the
code module as well. Chapter 6, "Completing the Application: Packaging and Deployment," discusses how to sign
your code modules with digital signatures.

When the code begins to run, Windows Mobile extracts the public key from the resource section of the code
module and uses it to decrypt the hash. Then it calculates a new hash for the module and compares it with the
decrypted value—if they match, this guarantees that the code module has not been modified in any way since it
was signed. Next, Windows Mobile extracts the public certificate from the code module, validates it to check that
it is properly formatted and that the dates are valid, and then creates a hash from it and examines the Privileged
Execution Trust Authorities and Unprivileged Execution Trust Authorities certificate stores on the device for a
corresponding hash.

From a security point of view, you enhance the security of the device—where your own application must run—by
signing your application and by setting appropriate security policy to prevent unsigned applications from
executing. We discuss how to do this in a short while, but first, you must understand something about how
Windows Mobile security policy works. What follows is a brief overview; for more information about application
security, see the article titled "Windows Mobile 5 Application Security" in the Microsoft MSDN Smart Client
Developer Center at msdn.microsoft.com/smartclient/default.aspx.

Understanding Windows Mobile Security Policy

Each Windows Mobile–powered device has a security policy that determines what is and what is not allowed to
run, and what a running application is allowed to do. The security policy determines what level of trust the
operating system will apply to applications according to the way the applications are signed.

Privileged, Unprivileged, and Unsigned Applications

The Windows Mobile security model recognizes three kinds of applications:

Privileged An application that has been signed using a certificate that has a corresponding certificate in
the Privileged Execution Trust Authorities certificate store

Unprivileged An application that has a corresponding certificate in the Unprivileged Execution Trust
Authorities certificate store

Unsigned An application that is not signed

Trusted and Normal Execution Modes

The Windows Mobile security model also recognizes two different application execution modes:

Trusted An application that is virtually unlimited in what it is allowed to do. It can write to any registry
key and call any Windows API.

Normal An application that is not allowed to call certain restricted APIs or modify restricted registry keys.
Restricted items are typically APIs and registry entries used to control security functionality and other
essential functions. For a list of restricted APIs and registry keys, see the topic titled "Trusted APIs" in the
Windows Mobile software development kit (SDK) documentation.

One-Tier and Two-Tier Security

Before Windows Mobile 5.0, Pocket PCs had no security. With the advent of Windows Mobile 5.0, Pocket PCs have
what is called a one-tier security policy. On a one-tier device, there is no difference between Trusted and Normal
execution modes. If an application is allowed to run (and you can still set policy to prevent unsigned applications
from running), it runs in Trusted mode. Pocket PCs running Windows Mobile 6.0 also come with a one-tier
security policy.

Smartphones running Windows Mobile 5.0 and later, on the other hand, nearly always come with a two-tier
security policy (although some suppliers configure them to be one tier). On a two-tier device, applications run as
either Normal or Trusted.

Security Policies

A security policy is simply a key–value pair that determines some aspect of security behavior on a Windows
Mobile–powered device. There are 24 key–value pairs; the important ones are as shown in Table 10-1.

Table 10-1. Windows Mobile Security Policies

Security Policy Description

4102 Can unsigned apps run?

0—No, unsigned apps cannot run.

1—Yes, unsigned apps can run.

4122 Prompt user to run unsigned apps.

0—Yes, prompt user.

1—No, do not prompt user.

Note that if policy 4102 = 0, the setting of 4122 is irrelevant
because unsigned apps cannot run.

4123 Is the device two-tier or one-tier?

0—Two-tier

1—One-tier

4097 User rights when making Remote API (RAPI; an API used by
desktop programs calling into a Microsoft ActiveSync–connected
device) calls.

0—RAPI disabled.

1—RAPI allowed with full access rights.

2—Restricted so that the desktop application has the same rights
as the device user.

(Note: By default, many Windows Mobile 5.0–powered devices have
RAPI disabled, so applications that used RAPI successfully with
older versions of Pocket PC may not work unless you change this
policy.)

Security Configurations

Windows Mobile combines the four security policies described in Table 10-1 into different combinations, each of
which describes a security configuration. The five security configurations are described in Table 10-2.

Table 10-2. Windows Mobile Security Configurations

Configuration

4102
(Unsigned
apps can run?)

4122 (Prompt
user for unsigned
apps?)

4123 (One-tier
or two-tier?)

4097 (RAPI
allowed?)

Locked 0—No 1—No Either 0—Disabled

Third-Party-Signed 0—No 1—No Either 0—Disabled

Two-Tier-Prompt 1—Yes 0—Yes 0—Two-Tier 2—Restricted

One-Tier-Prompt 1—Yes 0—Yes 1—One-Tier 2—Restricted

Security-Off 1—Yes 1—No 1—One-Tier 1—Allowed

Note that the Visual Studio 2005 Pocket PC emulator is configured with the One-Tier-Prompt security
configuration, and the smartphone emulator is configured with the Two-Tier-Prompt configuration.

Viewing and Provisioning Security Configurations with the Security Manager PowerToy

You can download the highly useful Microsoft Device Security Manager PowerToy for Windows Mobile 5.0 from
http://www.microsoft.com/downloads. It is a remote configuration tool that runs on a host workstation. You can
use the Device Security Manager PowerToy to perform the following tasks:

Examine the security configuration of a Windows Mobile–powered device.

Provision one of the standard security configurations onto a mobile device.

Save the security configuration of a mobile device.

Add a development certificate to a mobile device.

Sign a file with a signing certificate.

Check a file's digital signature.

With this tool, you can modify the configuration of an unlocked device or an emulator so that you can test how
your application operates on devices with different security configurations. To use the Device Security Manager
PowerToy, connect your device with ActiveSync, and then run the tool. The main screen displays the security
configuration of the connected device on the right, and on the left you can select a different security
configuration and then provision it to the device by clicking the arrow in the center, as shown in Figure 10-14.
The menus contain options you can use to sign a file (an .exe or .dll) with a privileged or nonprivileged certificate
and provision root development certificates to the device.

Figure 10-14. The Windows Mobile Device Security Manager PowerToy

[View full size image]

Provisioning Windows Mobile–Powered Devices

Finally, the point of all the details of the Windows Mobile security policy: If you are an enterprise user who
deploys a large number of unlocked devices into the field, the devices quite likely will come from your supplier
with a Security-Off security configuration. Before you deploy devices to users in the field, you need to ensure
that security policy is configured appropriately, and it is likely that part of that will be to configure them so as to
prevent your users from running unsigned applications. Note that if your devices are commercially obtained from
a phone network operator, they will almost certainly come with a Locked or Third-Party-Signed configuration, and
unless the operator provides you with a tool to modify security configuration that is itself signed with a privileged
certificate, you will not be able to change the security configuration of the device.

If you are working with a mobile operator or a mobile device manufacturer to deploy your Windows Mobile
devices, you may be able to acquire mobile devices that have been preconfigured with the technologies and
security settings that fit your needs.

If you cannot get suitably configured devices from your supplier, or you want to modify the configuration of one
or more devices, you can create a .cab provisioning format (.cpf) file. You use this special form of .cab file to
modify configuration settings on a device, such as to prevent unsigned applications from running.

Preventing Unsigned Applications from Running

To prevent unsigned applications from running, first create the provisioning XML. This is an XML fragment
consisting of a <wap-provisioning> element that contains a <characteristic> element. There are many different
characteristic types; see the Windows Mobile SDK documentation for a full list.

Inside the XML, you specify the SecurityPolicy characteristic type and then supply the new value for each security
policy you want to change; to prevent unsigned applications from executing, set the 4102 security policy to 0.
The XML looks like this:

<wap-provisioningdoc>
 <characteristic type="SecurityPolicy">
 <parm name="4102" value="0" />
 </characteristic>
</wap-provisioningdoc>

Save the file containing the XML with the name _setup.xml, and then run the MakeCab utility from a command
prompt to create the .cab file. You can find the MakeCab utility in the <drive>:\Program Files\Microsoft Visual
Studio 8\SmartDevices\SDK\SDKTools folder. Use the following syntax:

Makecab _setup.xml DisableUnsignedApps.cpf

Note that you do not have to use the .cpf extension for the output file, although this is the convention; a
conventional .cab extension works just as well.

Tip

As mentioned previously, current Windows Mobile–powered devices come with
policy 4097 (RAPI Enabled) set to 0, meaning Disabled. RAPI is a valuable tool for
developers; for example, you require RAPI to be activated to use the Remote
Performance Monitor tool mentioned in Chapter 4, "Catching Errors, Testing, and
Debugging," and Chapter 5, "Understanding and Optimizing .NET Compact
Framework Performance." To enable RAPI on a device, create a provisioning .cab file
as described here, but use <parm name="4097" value="1" />.

Install the resulting .cab file on your devices to apply the security configuration change. You can do this in many
ways, such as by copying the .cpf file to the device through ActiveSync or using a storage card. Windows Mobile
5.0 also supports updates over the air by Open Mobile Alliance (OMA) Device Management (DM) push or by OMA
Wireless Access Protocol (WAP) push, where a Microsoft Systems Management Server (SMS) message is sent to
the device to trigger the update process. You can also send to the device an e-mail or SMS message that
contains a link to a Web site where you deploy the .cpf file so that the device pulls the update from your server.
For more information about these methods and for more examples of .cpf files, see the section titled
"Provisioning for Windows Mobile–based Devices" in the Windows Mobile SDK documentation.

Note

If you are an enterprise user, you can prevent users from running unapproved
applications—even those that are signed by a valid certificate—by removing from
the certificate stores all root certificates other than the root certificate for your own
code-signing certificates. You could even create your own root certificate, generate
your own code-signing certificates, and install just your own root certificate on the
device. This stops users from installing applications from other sources.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

This chapter covers a number of topics related to security. The Mobile Configuration and Mobile Authentication
Application Blocks from the Microsoft patterns & practices Mobile Client Software Factory support password-based
authentication and encryption of sensitive data that meet the security needs of many mobile applications and
that are easy to use. This chapter also explains how to use symmetric encryption and how to use public–private
key pairs to exchange secrets securely between two individuals.

The chapter then describes how to use SSL to secure communications over HTTP and how to connect successfully
to a server that has been secured with your own self-signed server certificate. It also discusses perimeter
security, preventing attackers from gaining access to your device, and how the remote management features of
Windows Mobile 5.0 and Exchange Server 2003 can enforce some aspects of security policy remotely and initiate
a remote wipe of lost or stolen devices. It describes Windows Mobile 5.0 security policy and how you can alter it
by using provisioning XML.

The most important advice in this chapter is right at the beginning: Ensure that you establish a security review
process as a key component of your software development processes, and carry out frequent reviews throughout
a project life cycle to make sure that security vulnerabilities in your software are identified and mitigated.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 11. Threading

In this chapter:

Why Use Threads? 406

Understanding Underlying Fundamentals 407

Maintaining a Responsive User Interface 412

Synchronizing Thread Activities and Access to Data 422

ThreadPool 430

Understanding Threading and Application Shutdown 431

Using .NET Timers 434

The topic of writing multithreading code or programming in a free-threaded environment is always a complex
one. Herewith it is referred to simply as threading, and no assumptions of previous knowledge are made.
Threading is the ability for two or more tasks to (appear to) be executing concurrently. Threading can improve
the perception of an application's performance.

If there is one chapter in this book that must be read with Microsoft Visual Studio next to you, this is it. We
include many code samples, and if you are new to threading, the best way to understand the text is actually to
run the code listed and observe the results that the text describes. This chapter is not intended to be read
without Visual Studio running because we do not believe threading can be appreciated by using a hands-off
approach. Try and make the changes in code as each section instructs, observing the results each time. More
often than not, you will be looking at the output window in Visual Studio, where the thread of execution will be
outlined. Although every sample in this chapter is available for download, you are encouraged to re-create the
code as per the listings to gain firsthand experience.

After you've been through this chapter once, you should be able to describe, among other concepts, scheduling,
race conditions, thread affinity, deadlocks, critical section synchronization objects, thread pools, and timers, to
name but a few.

The next section starts with the reasons why you would want to use threading.

Why Use Threads?

One thing most developers have heard about threading is that it can complicate the code of an application and
potentially make it difficult to understand, and that it can potentially lead to issues that are hard to diagnose. So
why introduce such a situation by using threads? The answer is throughput and responsiveness.

The last sentence hides one of the most common misconceptions about threading—that it apparently increases
performance. Although threading can increase the performance of an application, the performance optimization is
not always automatic and primarily occurs on server applications (for example, to service multiple requests)
running on hyperthreaded or multiprocessor computers. In this chapter, we focus on devices running Microsoft
Windows CE that run on a single processor and specifically on user interface (UI) applications. The concepts
described apply equally to desktop applications running on single-processor computers, and because the topic
always raises many questions in online forums, our coverage does not assume that you are familiar with threads.
Having said that, only the Microsoft .NET Compact Framework application programming interface (API) is
examined here, and not its richer counterpart of the full framework.

Every computer user has come across an application that suddenly stops responding. The user tries to interact
with the application, but the application appears frozen. As is often said, it "hangs." With correct usage of

threads in the program, the issue could have been alleviated.[1] This chapter focuses especially on this topic,
starting with the section titled "Maintaining a Responsive User Interface" later in this chapter.

[1] And with incorrect usage of threads, the issue can be amplified!

Although on a single processor the actual performance of a task cannot be improved (because the central

processing unit can do only one task at a time), you may have an opportunity to introduce parallelism in some
circumstances. For example, picture an end user requirement that can be broken down into separate tasks that
require different resources. If one task includes waiting for external input, for example, from the user or the
network, the CPU will be idle at some points—and a separate thread could use that idle time to perform a
different task in parallel. To make this example more concrete, imagine an application in which the user has
requested some data from the network. While the bytes from the socket intermittently arrive, the CPU has
moments of idleness, and the application can use those idle moments on the main thread to paint the user
interface while another thread assembles the bytes to form a complete message, which it would then interpret
and eventually pass on to the main thread to place on the already-drawn user interface. At the same time,
another thread could have been reading from a database to combine some local data with the network data if the
main thread painting the UI also left the CPU with some idle time.

So, to capitalize on CPU idle time and, more important, to ensure that the user interface remains responsive
under all circumstances, threads must be used. Before we delve into describing how to use threads correctly
through the managed API, first it is important for you to understand some relevant basics of how the operating
system works.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Understanding Underlying Fundamentals

Today operating systems are expected to be capable of multitasking and multithreading. In the Windows
operating system, multitasking is the ability to run multiple processes at the same time, each with its own
isolated memory area, such as Notepad, Calculator, and Microsoft Office Word, whereas multithreading is about
each process appearing to be performing more than one task at a time, such as searching the file system while
the user is still typing.

The .NET Framework introduces an intermediate concept of a lightweight conceptual process, the application
domain (AppDomain), that defines isolation, security, and unloading boundaries for managed code. Each
managed process has a default AppDomain, and in that you create threads. It is very rare in .NET Compact
Framework applications that you create an additional AppDomain, and regardless, it has no effect on the
discussion in this chapter.

Windows CE

Under Windows CE, each process has at least one thread, known as the primary thread or the main thread. Each
process may also have additional threads, known as secondary or worker threads. The only limit to the number of
threads in a process and indeed in the system is the memory of the device. In simple terms, a thread is a unit of

execution that also takes up some memory.[1] Note that a thread is not cheap to construct or to destroy because
it constitutes more than just a handle or a simple managed object.

[1] A thread has its own stack, a copy of the CPU registers, and some thread-local storage (TLS).

The operating system knows about all the threads on the system and can run only one thread at a time. It runs
threads in a round-robin fashion, regardless of what process each thread is running in. Each thread runs for a

predefined interval,[2] known as the thread quantum or time slice. After a thread completes its slice, a thread
context switch happens: The thread must copy its data out, and the next thread in the queue copies its data in,
its stack becomes the active stack, and execution continues. This switch is not cheap, so switching from one
thread to the next does come at a cost.

[2] In some versions of the Windows CE operating system, this defaults to 100 milliseconds, whereas in earlier versions it was 25

milliseconds. But because the interval is configurable by the original equipment manufacturer (OEM), the actual figure may vary

on your target device.

The preceding description of the operating system thread scheduling omits discussion of at least one aspect,
thread priority. Each thread has a default priority that can be changed programmatically. The priority of the
thread is a factor of the scheduling, and so, plainly put, higher-priority threads get to run before (and even can
interrupt) lower-priority ones. If threads of all UI applications on a system did not change their default priority,
each one would get an equal overall time slice and run every time its turn was due.

In a .NET Compact Framework application, you can change the priority of a thread by using the
System.Threading.Thread.Priority property typed as ThreadPriority enumeration. However, changing thread
priority is rarely justified, and in the overwhelming majority of managed applications it is absolutely unnecessary
to lower or raise the priority of a thread. As a side note, be aware that changing priorities without having a full
understanding of the system may lead to issues that are even harder to diagnose. This chapter does not discuss
thread priorities any further and always assumes that threads are running at their default normal priority. See
the following sidebar titled "Default Threads in a .NET Compact Framework Application" for more details.

Default threads in a .NET Compact Framework application

Every .NET Compact Framework application has more than one thread by default. Native
applications start with a single thread, and the application code can create additional ones.

In addition to the main primary thread of the process, managed applications also have another
thread that is used to track changes to the active TCP/IP interfaces (simulating the media sense
behavior that is present on Windows XP but not Windows CE). An additional thread is used to
control various period timers and timeouts that can be scheduled by the system or applications—in
version 1.0 of the .NET Compact Framework, this thread is started on application startup, but in
version 2.0, it starts only the first time it is needed. In addition, another thread is used to run
object finalizers. This thread is created when the first finalizable object is collected by the garbage
collector (See Chapter 5, "Understanding and Optimizing .NET Compact Framework Performance,"

for more on garbage collection.) So these three additional threads are out of the developer's control
in terms of changing their priority or anything else.

Furthermore, when calling framework methods that begin with BeginXXX, under the covers the
implementation is using a thread to achieve some asynchronous operation. The thread used is likely
coming from the ThreadPool, which is examined later in this chapter.

System.Threading

To this point, and in fact throughout most of this book, the examples given assume a single-threaded normal
scenario. Your Windows Forms application has a main thread, and all the code you write executes under that
main thread. If none of the operations your application performs take a long time, and hence they never block
the user interface or you do not want to take advantage of idle CPU time, you probably will not ever explicitly
need to create a thread. However, if that is not the case, you must become familiar with the System.Threading
namespace and its types. The code samples of this chapter assume that you have added a using

System.Threading statement at the top of the code files.[1] All the important Microsoft Win32 threading
primitives have a counterpart in this namespace, starting with the Thread class.

[1] If the compiler fails to resolve any type in the code sample (for example, Debug), you can right-click the type and then click

Resolve to resolve the namespace by inserting the namespace at the top of the file for you (for example, using

System.Diagnostics).

For a table mapping the native synchronization functions to the full .NET threading namespace, please see the
article titled "Synchronization Functions" on the Microsoft MSDN Web site at msdn2.microsoft.com/en-us/library
/aa302340.aspx#win32map_synchronizationfunctions.

The Thread class wraps the native thread. This is not guaranteed to remain true going forward, so to future-proof
your code do not always assume that there is always a native thread under your managed thread. For this
reason, the Thread class exposes a ManagedThreadId property instead of directly exposing the native thread's

handle.[1] A friendlier way to identify managed threads is to give them a name by using the Name property. Also
note that you can access the current thread executing your code from your code by using the static
Thread.CurrentThread property.

[1] ManagedThreadId will be constant if in the future the runtime decides to reuse a single native thread to power more than one

managed thread or if the runtime host decides to implement the thread as a fiber (outside the scope of this discussion).

New in version 2.0

This chapter would be quite different if it were written for version 1.0 of the .NET Compact
Framework. Version 2.0 adds many missing members to the System.Threading namespace that
correspond with the desktop version. These include overloads with timeout parameters for blocking
calls such as WaitHandle.Wait and new members for the Thread class, including Join, Abort,
IsBackground, and Name. Other new members are the Monitor.TryEnter method and some
overloads that take generic parameters on the Interlocked class. Also, the ThreadPool class was
fixed and updated. Relevant to threading, the Control.Invoke method now accepts any delegate,
including passing arguments, and also gains the asynchronous version BeginInvoke as well as the
ability to check whether they are needed by using InvokeRequired.

C# has always supported the volatile keyword, and now this is also supported in version 2.0 of the
.NET Compact Framework. This has no practical effect because everything in the .NET Compact
Framework is treated as volatile, but it does help developers who write cross-platform code to keep
their code base the same because previously the keyword would not compile. You can read about
the volatile keyword in the online documentation for C#, but in a nutshell, it prevents thread
caching of fields primarily on multiprocessor computers; the optimization is not always desired, and
the volatile keyword makes sure it does not take place. For more information on this topic, visit the
documentation and look up topics such as memory barriers. Understanding memory barriers will
also help you understand a .NET Compact Framework version 3.5 addition to the Thread class: the
static method MemoryBarrier (which is already part of the full framework version 2.0; see
msdn2.microsoft.com/en-us/library/system.threading.thread.memorybarrier.aspx).

In addition, two new types in the version 2.0 System.Threading namespace of the full .NET
Framework, Semaphore and EventWaitHandle, were not implemented for devices. You can
download community versions of them from The Moth weblog at www.danielmoth.com/Blog
/2005/01/semaphore.html and www.danielmoth.com/Blog/2005/01/eventwaithandle.html. Note
that EventWaitHandle is part of the .NET Compact Framework version 3.5.

At this point, by inserting a few lines of code you could use your own existing .NET applications to verify what we
just discussed. In an existing or new project, in the static Main function in the Program class/file, insert the
following line above the existing Application.Run statement (Microsoft Visual Basic developers, please refer to
Chapter 2, "Building a Microsoft Windows Forms GUI," for information about creating a Main function):

Thread.CurrentThread.Name = "Main UI Thread";
Application.Run(new Form1());

In other places of your code, for example, in a button click event handler or in any other method, insert the
following two lines of code:

Thread t = Thread.CurrentThread;
MessageBox.Show("This thread is " + t.Name +
 ", id=" + t.ManagedThreadId.ToString());

Run your application and observe how the same name and ID are returned regardless of which method is
executed.

The next example uses the two preceding pieces of code in a more specific scenario. Create a new project, assign
the main UI thread a name (as done previously), add an event handler to the left soft key by double-clicking it,
and add a method to the form with the code shown earlier. Your form code should look like this:

private void DoSomeWork()
{
 // TODO some work

 Thread t = Thread.CurrentThread;
 MessageBox.Show("This thread is " + t.Name +
 ", id=" + t.ManagedThreadId.ToString());
}

private void menuItem1_Click(object sender, EventArgs e)
{
 // UI thread
 this.DoSomeWork();
}

Tip

When logging information for your application as discussed in Chapter 4, "Catching
Errors, Testing, and Debugging," it is a good idea to log the name and ID of the
thread as part of the context.

Next, you see how to create a thread and start its execution on the DoSomeWork method. Add an event handler
to the right soft key, and in the event handler add the code that creates a thread:

private void menuItem2_Click(object sender, EventArgs e)
{
 // worker thread
 Thread t = new Thread(new ThreadStart(this.DoSomeWork));
 t.Name = "Worker Thread 1";
 t.Start(); // Thread does not execute until this line.
}

Now run the application on your target device. Tap the menu on the left to see the main thread's thread
information in a MessageBox, and tap the menu on the right to see the information of the worker thread.

Before we dive into a discussion about maintaining a responsive user interface (UI), we must establish a
common understanding about what we described earlier as an unresponsive application. Add a TrackBar control
to the sample application built in this section. Revisit the DoSomeWork method and add the following line of
code at the top, in place of the comment that was there previously:

 Thread.Sleep(5000); //Suspend thread for 5 seconds.

Note

Thread.Sleep(X) results in the thread not entering the queue of available threads
for scheduling for at least X milliseconds. We use this method liberally in this
chapter to simulate long-running tasks and to help demonstrate thread context
switching. In real code, Thread.Sleep is generally best replaced by options such as
a ManualResetEvent with a timeout. Note that passing 0 as the argument of

Thread.Sleep results in an immediate context switch to the next thread. Treat that
value as a special case in which the thread gives up its time slice and goes
immediately back in the queue, ready to be scheduled again.

Now run the application again and tap the left menu. Notice how no MessageBox appears as it did before, and
furthermore, if you try to move the slider on the trackbar, you cannot. In fact, if you click the device menu at the
upper right or open the software-based input panel (SIP), you may notice that that area of your application is not
being painted anymore. This is because the main UI thread of your application is blocked. The application is not
responsive. After 5 seconds, the MessageBox will appear; dismiss it. Then click the right button; in the 5 seconds
it (still) takes for the MessageBox to appear, note how you can still interact with the form, for example, by using
the TrackBar. The following section elaborates on this scenario and gives more examples.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Maintaining a Responsive User Interface

The last section ended with a demonstration of an unresponsive UI. It is interesting to note why an application
may become unresponsive.

Message Pump

Every Windows application has what is called a message pump. In reaction to user interaction, Windows sends
Windows messages to the message queue of an application. In .NET, the message is handled for the developer
and is translated into a friendly .NET event. For example, when the user taps the screen, Windows sends a
WM_LBUTTONDOWN message (followed by a WM_LBUTTONUP) to the message pump of your application, and
this is translated into MouseDown, MouseUp events and possibly, depending on the control, into a Click event.
The main thread of your process is simply waiting for new Windows messages to arrive in the message queue
and processes them in order inside a loop. The message pump for your application was created when you called
Application.Run(yourForm), and when your form closes, so does the application, as established in Chapter 2.

It may be clear now why the application can become unresponsive: as a result of a Windows message, an event
handler was run on the main thread; when your code takes too long to complete its task, the main thread is not
processing Windows messages and hence is unresponsive. Some of the Windows messages may be WM_PAINT
messages, which also explains why the application is not even repainted. Note that these messages are queued
so that when your main thread is freed to return to the loop, it will process all the messages in order.

Long-Running Tasks

In an earlier section, we simulated a long-running activity by using a call to the static method Thread.Sleep.
Real-world applications contain numerous examples of tasks that should not be done on the main thread if they
are time-consuming, such as calling Web services or any other network activity, or interacting with a database,
the file system, and generally any form of input/output (I/O). Do not forget that a task that takes a short period
of time under your developer's test may take considerably longer under other circumstances. For example, you
may test using queries to a database that do not take as long to run as do the queries that a user will use. The
user may make a network call when the Domain Name System (DNS) server is absent, for instance, which could
result in a lengthy wait. A method that accepts a path to open a file could end up trying to open from a very slow
storage card. In addition to scenarios similar to these, your application may be required to perform some genuine
heavy calculation that is CPU-bound and, again, that will block the UI if you make the call from the main thread.
For all of the preceding situations, you can use a worker thread to achieve the goal of maintaining a responsive
UI. An example will clarify this advice and highlight some of the issues.

Demonstration Example

This fictitious example traverses the file store and lists all files and folders in a ListBox control. In a new device
project, add a label, add a list box, type Load as the text for the left menu/soft key, and type Cancel as the text
for the right menu item. Then add this code to the form:

private ArrayList allFiles = new ArrayList(); // holds the results
private bool stopRequested = false; // User hit the Cancel button.

private void menuItem2_Click(object sender, EventArgs e)
{
 // cancel
 stopRequested = true;
}

private void menuItem1_Click(object sender, EventArgs e)
{
 // load list
 label1.Text = "";
 listBox1.DataSource = null;
 stopRequested = false;

 this.GetAllFiles(); // will have populated the allFiles ArrayList

 label1.Text = allFiles.Count.ToString();

 listBox1.DataSource = allFiles;
}

private void GetAllFiles()
{
 allFiles.Clear();
 this.PopulateAllFilesFor(@"\");
 Debug.WriteLine("Finished");
}

private void PopulateAllFilesFor(string path)
{
 Debug.WriteLine("Processing new path");
 if (stopRequested)
 {
 return;
 }

 allFiles.Add(path);

 string[] files;
 files = Directory.GetFiles(path);
 allFiles.AddRange(files);
 Debug.WriteLine(allFiles.Count.ToString());
 label1.Text = allFiles.Count.ToString();

 if (stopRequested)
 {
 return;
 }

 foreach (string subDirectory in Directory.GetDirectories(path))
 {
 this.PopulateAllFilesFor(subDirectory); //recursion
 }
}

When you run the application and tap the button to read the file store, the application stops responding and
hence, tapping the button that requests cancellation of the task has no effect. Also, when you update the label
with an intermediate count of files, the label is not updated until the end. This becomes even more visible if you
tap the button to load again after loading the files in the list box; notice how the list box and label do not clear
even though there is code to do so. The paint message is not being processed.

Note how when the application is running on the target, you can see the Debug.WriteLine results in the output
window of Visual Studio. This becomes important later.

Nonideal Solutions

If you are happy living with long delays and unresponsive applications but still want to have the application paint
its user interface, you can call the form's Refresh method, that is, this.Refresh();. This does not, for example,
make the Cancel button respond to user input, but it does redraw the form. Try it by inserting the call to Refresh
at the top of the PopulateAllFilesFor method. Notice how the label updates while the long task is running and
how clicking the Load button for a second run clears the list before repopulating it. However, tapping the Cancel
button or trying to close the form still has no effect.

In older single-threaded environments, developers had to resort to a workaround for making the application
respond occasionally during its long-running tasks and hence also allow cancellation of the long-running task.
They achieved this through a call to DoEvents, which still exists in the managed world: Application.DoEvents.
Recall the discussion about the message pump. DoEvents instructs the main thread to process all the messages
waiting in the queue and only then to continue executing the code that follows the call to DoEvents.

Before we discuss the implications, first let's show it in action. At the top of the PopulateAllFilesFor method,
instead of the call to Refresh, make a call to Application.DoEvents, and then run the application. Notice how you
can cancel the loading and only partial results are loaded in the list.

DoEvents can be very attractive for simple scenarios, especially when you can avoid using threads, which can
complicate code. However, DoEvents can be very dangerous. This is evident when you actually digest the earlier
statement about what it does: It processes all messages in the queue and then continues to execute the code
after the call to DoEvents. This can lead to reentrant code. That is, a method that is already running gets to run
again concurrently. Dealing with such situations is the same as dealing with threading except that the code is
not written with multithreading in mind in the first place; otherwise, the developer would have chosen proper
use of threads rather than DoEvents.

We could provide many examples of why we think you should not use DoEvents, but instead we provide just one:
Tun the application again with the DoEvents statement as before, and this time tap the Load button twice. Can

you rely on those results? Does the label show the correct number of results? One solution to the issue is to
redesign the method so that it can cope with reentrancy, and another is to disable the button so that it cannot be
clicked more than once. In a larger application with a more complicated UI, it would be harder to analyze all the
possibilities of what a DoEvents call can affect.

Using a Thread to Solve the Problem

Reset the code to the original, that is, remove the DoEvents and Refresh calls in the PopulateAllFilesFor method.

In the menuItem1_Click method, replace the call to GetAllFiles with the following:

Thread t = new Thread(new ThreadStart(this.GetAllFiles));
t.Name = "Worker: allFiles populator";
t.Start();

Run the code, and observe a NotSupportedException with the message, "Control.Invoke must be used to interact
with controls created on a separate thread." The exception is thrown in the PopulateAllFilesFor method on the
line that attempts to assign a value to the label1.Text property. Although this is very important, we would like to
discuss it a bit later, so comment out that line for now.

After you comment out the line that assigns text to the label, run the project again and watch the output window
carefully before and after you tap the Load button. Notice how the UI has some items in the list box, the label is
blank, and the output window is still showing that processing is taking place. Now that you've introduced a
thread, the thread is doing the processing, but the main thread also continues executing its own statements so
that it reaches the ListBox data-binding statement before the worker thread has had a chance to complete the
processing. Run the code a few more times, and note how you can cancel the operation as the output window
shows and that the UI is responsive. Those goals were achieved, but new problems were introduced: How can
the two threads cooperate? The real answer lies in the Control.Invoke section, similar to the earlier issue of the
NotSupportedException. Before we discuss that, though, we explore two alternative solutions.

System.Windows.Forms.Timer

In some scenarios, you can use a System.Windows.Forms.Timer instead of or in complement to threading. In the
example scenario, rather than figure out the solution to the real problem of having the two threads communicate
when the worker thread has the results ready for the main thread to use, you could elect to use a polling
technique in which the main thread checks at set intervals if the results are ready. If you add a timer to the form
and set it to raise its Tick event every second, in the Tick event, which is on the main thread of course, you could
check a new boolean flag if the worker thread has finished its work. If the worker thread has finished, you can
stop the timer from ticking and data-bind the ListBox control to the ArrayList variable. If it hasn't finished, you
can check the flag on the next tick. In the worker thread, you would simply set the flag when finished.

One of the issues with using such timers in this way is that the main thread is not notified exactly when the
results are ready. This means the worker thread may have completed and the user still has to wait for the main
thread to realize it, which can be potentially much later when you use this polling technique. Also, the reverse is
not ideal. If the worker thread takes too long to complete the task, the main thread is still checking at frequent
intervals for the results when it could be using those CPU cycles for something else.

Another consideration with the use of timers is the impact on battery life. Unnecessarily wasting CPU cycles
affects the device's battery life negatively, and this is one of the reasons why event-driven designs are preferred
over polling techniques.

Nevertheless, in some scenarios this nonoptimal solution may be applicable.

Thread.Join

The issue at hand can be restated as follows: How can one thread wait for another to exit and only then continue
processing its own work? There is a perfect answer to that precise question in the form of the Thread instance
method: Join. Using Join works great between worker threads but is definitely not advisable for use by the main
thread, as will become obvious in the next paragraph. Nevertheless, this is a good opportunity to explore this
method.

In the menuItem1_Click method, after the call that starts the thread and before the update of the label, insert
the following line of code (read the comment):

 t.Join(); // whatever thread is running, blocks waiting for it to exit

Run the application and tap Load to see the effects of this self-explanatory method call. Note how the main
thread does not continue execution and instead waits for the worker thread to exit. At that point, the main
thread continues execution, which results in a correct update of the UI with the results. This method works great
between worker threads, and you can probably see why it should never be used from the main thread: The UI is
once again blocked because the main thread is waiting on the worker thread, unable to process any Windows
messages.

Control.Invoke

In this section, we discuss the first rule of threading on the UI and how to use it in the example. Before that,
though, we explain the use of Control.Invoke with an isolated new example.

Touch UI Elements Only from the Thread That Created Them

The rule of Windows, regardless of managed or native code, is that the thread that creates a control (that is,
creates its handle) is the only one that can subsequently modify any of the control properties (that is, directly
make API calls to its handle), which can also be stated as follows: Windows objects have thread affinity. Every
time your code reads or writes to a property of a control or calls a method that does the same, it must be done
from the same thread that created the control. In practical terms, this means that only your main thread can
"touch" controls, and any worker threads cannot. This begs the question of how you can update the user
interface from a worker thread. The answer is by calling the control's Invoke (or BeginInvoke) method, which,
along with InvokeRequired, is safe to call from any thread.

Caution

With version 1.0 of the .NET Compact Framework, the results of breaking this rule
were indeterminate and usually resulted in the application hanging. With version
2.0, a NotSupportedException is thrown. This crucial help is applicable only for
device projects. Running .NET applications on the desktop can be more forgiving
than running them on Windows CE is. Even though you may get away with touching
UI elements from a worker thread, you should avoid doing so because it may work
in some situations and fail in others. Finally, note that putting a MessageBox on the
screen is the only UI operation a worker thread is allowed to make.

Here is a short example. On a new device project, place a TextBox on the form and create the two event handlers
for the soft keys as follows:

 private void menuItem1_Click(object sender, EventArgs e)
 {
 Thread t = new Thread(this.UpdateUI);
 t.Name = "Worker: Assigns form's caption text.";
 t.Start();
 }
 private void menuItem2_Click(object sender, EventArgs e)
 {
 this.UpdateUI();
 }

 private void UpdateUI()
 {
 this.Text = textBox1.Text;
 }

Run this application. When you tap the second soft key, the application updates the caption of the form using the
text of the text box. When you tap the first soft key, the NotSupportedException is thrown. Next, add this
method to the form:

 private void ThreadMethod()
 {
 // Do other thread work.
 this.Invoke(new MethodInvoker(UpdateUI));
 }

The preceding method presumes you have declared in your form this delegate:

 delegate void MethodInvoker();

and that you have changed the thread constructor in menuItem1_Click as follows:

 Thread t = new Thread(this.ThreadMethod);

Now running the application works regardless of which soft key you tap.

The Invoke method stores in a queue the delegate that was passed to it, and then it sends a custom Windows
message to the application message queue. When that message is processed, the processing method notifies the

control by calling an internal method. In that method (now on the main thread, of course), the control invokes all
delegates in its internal queue.

You can pass any delegate to Invoke, and if you use the asynchronous version, BeginInvoke, execution of the
current thread continues to the end of its time slice before the delegate is executed on the main thread.

Sometimes you may prefer an alternative design to extracting a method and pointing a delegate to it. If the
method is not called from anywhere else, you can use a new version 2.0 feature of anonymous methods as
follows:

 private void AlternativeThreadMethod()
 {
 this.Invoke(new MethodInvoker(
 delegate() { this.Text = textBox1.Text; }
));
 }

Another point to note is that, by design, your methods should almost always know whether they are going to be
called on the main thread or on a worker thread. If after analyzing your code you find that your methods do not
know if they are being called on the main thread or not, rethink your design—this is often a clue to bad design.
Having said that, you can determine programmatically whether Invoke is required by checking the property
Control.InvokeRequired. To see this in action, undo all the changes you have made so far to this short example,
and then modify the UpdateUI method as follows:

 private void UpdateUI()
 {
 if (this.InvokeRequired)
 {
 // On worker thread—call self again by using Invoke.
 this.Invoke(new MethodInvoker(this.UpdateUI));
 return;
 }
 // Running on main thread, so update directly
 this.Text = textBox1.Text;
 }

It is important to emphasize the point that you cannot touch UI controls from worker threads. This is true for
properties and methods that update the handle of the control as a side effect. Because you do not know what the
implementation of control members does internally, follow this rule for all members. For example, in current
implementations, accessing the Tag property of a control simply stores or retrieves an object and doesn't affect
the handle of the control at all. In this case, it is OK to touch the Tag member from worker threads.

Using Control.Invoke in the Earlier Example

Now that you are an expert in updating UI elements, it is useful to revisit the original demonstration example
introduced in the section titled "Demonstration Example" earlier in this chapter. The last modification you made
was to introduce the Join method call.

Recall where the NotSupportedException was thrown and that the quick fix was to comment out the line that
touched the label1 control. Now you know how to fix this scenario. Replace the commented line with this line of
code:

 this.Invoke(
 new EventHandler<LabelEventArgs>(UpdateLabel),
 new object[]{label1, new LabelEventArgs(allFiles.Count)});

The preceding code uses the overload of Invoke that accepts arguments to be passed to the target method of the
delegate. The code statement above assumes you have declared a new LabelEventArgs class and a new form
method as follows:

private class LabelEventArgs : EventArgs
 {
 public LabelEventArgs(int items)
 {
 NumberOfItems = items;
 }
 public int NumberOfItems;
 }

private void UpdateLabel(object sender, LabelEventArgs e)
{
 label1.Text = e.NumberOfItems.ToString();

}

Study the code to make sure you understand if this will work. The intention, of course, is to update the label with
intermediate results from the worker thread while it is executing. Start the project in debug mode in Visual
Studio to see the effect. Was it what you expected? A hung application! The only option now is to stop debugging
in Visual Studio and continue reading for an explanation of what went wrong.

What just occurred is called a deadlock. The main thread is blocked, waiting for the worker thread to finish (by
using the Join method call). Meanwhile, the worker thread is waiting for the main thread to process the custom
Windows message sent by the call to Invoke. One is waiting for the other, and neither can continue. This is the
definition of a deadlock, which is one of the pitfalls of multithreading that you must design against. In this
specific case, we established earlier that the call to Join from the main thread is a huge error. Now, with your
knowledge of Control.Invoke, you can solve the issue that resulted in introducing the call to Join.

The objective is to be notified on the main thread when the worker thread completes its task so that the main
thread can make the final update to the UI. Can you see how to achieve this now? Refactor the menuItem1_Click
method into the following two, eliminating the call to Join:

 private void menuItem1_Click(object sender, EventArgs e)
 {
 // Load list.
 label1.Text = "";
 listBox1.DataSource = null;
 stopRequested = false;

 Thread t = new Thread(this.GetAllFiles); // delegate inference
 t.Name = "Worker: allFiles populator";
 t.Start();
 }

 private void UpdateBox(object sender, EventArgs e)
 {
 label1.Text = allFiles.Count.ToString();
 listBox1.DataSource = allFiles;
 Debug.WriteLine("Got results " + listBox1.Items.Count.ToString());
 }

Then add the following line at the end of the GetAllFiles method:

 this.Invoke(new EventHandler(this.UpdateBox));

Now run the application, and it should work exactly as expected. Once again, observe the output window with
the debug messages because they may help clarify the flow. The completed example is available with the
downloadable code for this chapter on this book's companion Web site.

BackgroundWorker

Version 2.0 of the full .NET Framework introduces a new component for helping with threading scenarios such as
the ones described earlier: the System.ComponentModel.BackgroundWorker. Here is an example of its use:

BackgroundWorker bw;
private void menuItem1_Click(object sender, EventArgs e)
{
 label2.Text = "will kick it off";

 bw = new BackgroundWorker(this);
 bw.DoWork += new DoWorkEventHandler(bw_DoWork);
 bw.RunWorkerCompleted+=
 new RunWorkerCompletedEventHandler(bw_RunWorkerCompleted);
 bw.RunWorkerAsync(textBox1.Text);
}
void bw_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
 // can touch UI. Thread communicates to UI.
 // You don't have to Control.Invoke explicitly.
 label2.Text = e.Result.ToString();
}

void bw_DoWork(object sender, DoWorkEventArgs e)
{
 // Do time-consuming work.
 System.Threading.Thread.Sleep(3000);

 // could assign any other object
 e.Result = "finished :) " + e.Argument.ToString();
}

Notice how there is no need to create a thread explicitly, and instead a simple handling of an event results in the
worker method running on another thread. Also, passing an argument to the worker method is simple, as is
extracting the result on the UI thread without explicitly using Control.Invoke. However, the true power of the
System.ComponentModel.BackgroundWorker component lies in its ability to easily marshal progress from the
worker method to the UI and also its ability to cancel the task. In the downloadable code for this chapter on the
book's companion Web site, you can find an example that builds on the one in the preceding listing and that
further demonstrates progress reporting and cancellation.

Although this class is not available in any version of the .NET Compact Framework, you can find a community
version of it along with a great sample of its use on The Moth Web site at www.danielmoth.com/Blog/2004/12
/backgroundworker-sample.html.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Synchronizing Thread Activities and Access to Data

Earlier we introduced one of the pitfalls of threading: deadlocks. In that example, it was easy to spot the
problem, but that is not always the case. Before we look at other deadlock examples, we must introduce another
pitfall of threading: race conditions.

Race Conditions

What happens when multiple threads access the same data at the same time? The answer is: indeterminate
results. For this reason, you must synchronize access to global data from multiple threads. An example can help
convey the message. Consider the following code in a new solution with a form that has a button:

long someCounter = 0;

private void button1_Click(object sender, EventArgs e)
{
 someCounter = 0;
 Thread t1 = new Thread(this.ThreadFirst1);
 t1.Name = "Worker Thread 1 ";
 Thread t2 = new Thread(this.ThreadSecond2);
 t2.Name = "Worker Thread 2 ";

 t1.Start();
 t2.Start();

 t1.Join();
 t2.Join();

 MessageBox.Show("Final result = " + someCounter.ToString());
}

private void ThreadFirst1()
{
 for (long j = 0; j < 100000000; j++)
 {
 Debug.WriteLine(Thread.CurrentThread.Name + "before inc");
 someCounter += 1;
 }
 MessageBox.Show(Thread.CurrentThread.Name, "Done");
}

private void ThreadSecond2()
{
 for (long j = 0; j < 100000000; j++)
 {
 Debug.WriteLine(Thread.CurrentThread.Name + "before inc");
 someCounter -= 1;
 }
 MessageBox.Show(Thread.CurrentThread.Name, "Done");
}

If you run the preceding code, you would expect to see the final result of someCounter be zero (0) because it is
incremented and decremented an equal number of times. Indeed, that may be the case when you run the code
sometimes, but other times it will not be the case. The variable someCounter is declared at the form level and
hence is shared between all threads. Therefore, the two threads modify the same variable at the same time, and
this can lead to indeterminate results or, in other words, corrupt results.

At this point, you may recall an earlier statement: Threads on a single-processor computer do not really run at
the same time; instead, they run in turn as scheduled by the system. Although that is true, you must consider
the statements that access the shared variable: someCounter += 1 and someCounter –= 1. When you look at

the disassembly using Ildasm.exe, you can see that the single C# statement actually is five statements:

 IL_0007: ldfld int64 CodeForChapter11cs.frmMoreThreads::someCounter
 IL_000c: ldc.i4.1
 IL_000d: conv.i8
 IL_000e: add
 IL_000f: stfld int64 CodeForChapter11cs.frmMoreThreads::someCounter

The first statement loads the someCounter variable on the stack, the second one loads a 4-byte constant (1), the
third statement converts the latter to 8 bytes, the fourth statement adds the constant to the variable, and finally
the fifth statement stores the result back in the someCounter variable. The point here is not to teach
intermediate language (IL) statements but simply to demonstrate that a single statement in a high-level
language can be multiple lines of code at run time. The scheduler could perform a context switch at any point,
and when one thread is switched out, it could be on any of the preceding lines, for example, just before the fifth
statement. The other thread then executes its statement, modifying the someCounter variable, until at some
point the scheduler switches to the first thread. The first thread continues on processing the statement it was on
last, which, for example, is to store the value in someCounter. The first thread has overridden any changes that
the second thread had performed, and hence the data is corrupted. It is worth mentioning here that if a
statement represents an indivisible instruction, the problem described does not exist and the statement is said
to be atomic.

Before we examine a solution, another code example is in order. Add this method to the same form of the
preceding example:

 private void ThreadBoth()
 {
 Debug.WriteLine(Thread.CurrentThread.Name + "enters method");
 int localVar = 0;
 localVar += 1;

 if (someCounter == 0)
 {
 Debug.WriteLine(Thread.CurrentThread.Name + "in if block");
 Thread.Sleep(1); // Simulate some longer activity.
 someCounter += localVar;
 Debug.WriteLine(Thread.CurrentThread.Name + "just incremented");
 }
 else
 {
 Debug.WriteLine(Thread.CurrentThread.Name + "in else block");
 someCounter += 3;
 }

 return;
}

Modify the two thread constructors in the button1_Click method so that both point to ThreadMethod. What value
do you expect someCounter to have when both threads have exited the method? Run the application and try
tapping the button a few times. Race conditions are hard to replicate, so you may get the same result all the
time, but in theory you could get one of two results: 4 or 2. If you were expecting anything else, you may have
been confused by the localVar variable: Remember, each thread has its own copy of local variables, so they are
never an issue unless you were expecting them to be shared, of course!

In the example just presented, the programmer's intention was for the first thread to initialize the variable to 1
while any subsequent threads increment it by 3, and hence the desired result, 4. To ensure that that happens,
code must be added that protects the someCounter variable from being concurrently accessed. We examine this
in the next section.

Monitor

You can protect a variable from concurrent access by analyzing the code and identifying code regions that must
allow only a single thread to enter at a time. These sensitive code regions are known as critical regions, and their
goal is to treat multiple related operations as atomic. You can use the System.Threading.Monitor class to achieve
this, as the following code example shows.

object someLock = new object();
private void SomeMethod()
{
 // some code

 Monitor.Enter(someLock);
 // critical region, only one thread at a time enters this
 Monitor.Exit(someLock);

 // other code
}

The Monitor.Enter method accepts an object that is used to guard the region. If in some other part of your
application, that is, in another method on another class even, you want to ensure that another region also is not
entered while this one is owned by a thread, you would use the same object as the lock.

In the preceding code example, there is a huge flaw. What happens if an exception is thrown inside the critical
region? In that case, the Exit method would never be called, thus never releasing the lock! To rectify this, the
code should look as follows:

 Monitor.Enter(someLock);
 try
 {
 // critical region, only one thread at a time enters this
 }
 finally
 {
 Monitor.Exit(someLock);
 }

This advice is so important that both C# and Visual Basic have keywords that wrap this functionality, and you
should use them: lock and SyncLock, respectively. Revisiting the example of the immediately previous section,
protect the region and ensure that the result of someCounter is always 4:

private object someLock = new object();
private void ThreadBoth()
{
 Debug.WriteLine(Thread.CurrentThread.Name + "enters method");
 int localVar = 0;
 localVar += 1;

 lock (someLock)
 {
 if (someCounter == 0)
 {
 Debug.WriteLine(Thread.CurrentThread.Name + "in if block");
 Thread.Sleep(1); // Simulate some longer activity.
 someCounter += localVar;
 Debug.WriteLine(Thread.CurrentThread.Name + "just incremented");
 }
 else
 {
 Debug.WriteLine(Thread.CurrentThread.Name + "in else block");
 someCounter += 3;
 }
 }
 return;
}

When locking or protecting a critical region, choose the lock object with care. Contrary to what you may see in
quickly thrown together sample code, never use this or typeOf(SomeClass) as the lock object because any other
thread could also lock on the objects you have chosen, and that could potentially lead to deadlocks. Instead,
choose a dedicated object for your lock, one that only the relevant code can access such as object someLock =
new object(). Finally, be sure to keep the critical regions short because unnecessarily protecting more code than
necessary prevents code from being executed by other threads in parallel.

Thread Safe

Like your methods, the framework's methods also contain state. If you call those methods from multiple threads,
do you expect them to result in corrupt data or not? The answer depends on which library and which specific
method is in question.

A method that can be safely called by multiple threads simultaneously is said to be thread safe. Most of the
framework is not thread safe. As a rule of thumb, all static methods of the framework are implemented to be
thread safe and most instance methods aren't. The documentation states which methods are thread safe. You
should follow the same pattern in your own class libraries. Not everything is implemented to be thread safe
because obtaining locks is not a cheap operation. So the responsibility for writing thread-safe code with any
library is left to the caller of the library. Besides, sometimes the decision to implement thread safety can be
made only at a higher level and not in the library.

Chapter 5 describes how to view run-time performance counters. Be sure to explore the threading counters that

are relevant to locking to identify potential misuse. Locks should be obtained for as little time as possible, so you
must analyze the code carefully to ensure that this is the case.

In addition to the Monitor class discussed earlier, take a moment to familiarize yourself with the remaining
classes in the System.Threading namespace. You may find the Interlocked class is more efficient than a Monitor
is for the scenarios it supports, for example, safely incrementing an Int64: Interlocked.Increment(ref
someLongVar).

Collection classes are particularly susceptible to threading issues, so if the design mandates that they be shared
among threads, ensure that all access to any members of the collection is protected with the same locking
object. Some collections even offer a synchronized wrapper, but that does not perform as well, so manual locking
is preferred. As the lock object, you should use the collection's SyncRoot property because that is what the
private methods of the collection object use to protect access to the private internal state.

Deadlocks Revisited

Now that you understand how to define and obtain locks for critical regions, you can imagine how deadlock
situations can occur if you are not careful with your design. The following example demonstrates such a scenario:

object someLock = new object();
object someOtherLock = new object();
private void menuItem1_Click(object sender, EventArgs e)
{
 Thread t1 = new Thread(this.DeadlockOne);
 t1.Name = "Worker Thread 1 ";
 Thread t2 = new Thread(this.DeadlockTwo);
 t2.Name = "Worker Thread 2 ";

 t1.Start();
 t2.Start();
}

private void DeadlockOne()
{
 Debug.WriteLine(Thread.CurrentThread.Name + " enters DeadLockOne");
 lock (someLock)
 {
 Debug.WriteLine(Thread.CurrentThread.Name + " obtained SomeLock");
 // Run some code.
 Thread.Sleep(1); // simulate a context switch
 lock (someOtherLock)
 {
 Debug.WriteLine(Thread.CurrentThread.Name + " obtained SomeOtherLock");
 // Run some more code.
 }
 }
 MessageBox.Show("Thread 1 done");
}

private void DeadlockTwo()
{
 Debug.WriteLine(Thread.CurrentThread.Name + " enters DeadLockTwo");
 lock (someOtherLock)
 {
 Debug.WriteLine(Thread.CurrentThread.Name + " obtained SomeOtherLock");
 // Run some code.
 this.AnotherDemoMethod();
 }
 MessageBox.Show("Thread 2 done");
}

private void AnotherDemoMethod()
{
 Debug.WriteLine(Thread.CurrentThread.Name + " enters AnotherDemoMethod");
 lock (someLock)
 {
 Debug.WriteLine(Thread.CurrentThread.Name + " obtained SomeLock");
 // Run some more code.
 }
}

When you run the preceding code, the two threads will deadlock, each waiting for the other to proceed. Observe
the output window as always, and also break into the debugger and notice in the Threads window how the two
threads are blocked on the two locks. Finally, notice how in this case there is no visual cue to the situation; your
threads are simply not executing any further.

Deadlocks can be prevented only with careful design and by thorough understanding of where your threads can
be executing at all times. Also, it should be evident that more communication mechanisms for threads to
communicate with one another are needed. This is the subject of the next section.

ManualResetEvent

Most developers learn the principles and APIs described so far in this chapter, write some threaded code, and
then at some point encounter a design in which it should be possible for one thread to signal to another that it
should stop and block until it is signaled to continue execution. These are situations in which sleeping (using
Sleep) for a certain interval is not sufficient, joining a thread (using Join) when it exits is not applicable because
both threads must continue running, and obtaining a lock for a region isn't the exact requirement. Luckily, a
mechanism exists and is fundamental to thread communication and cooperation:
System.Threading.ManualResetEvent.

A ManualResetEvent object can be signaled or not signaled. It has a Wait method that when called blocks a
thread or returns immediately and hence allows the thread to continue. Whether it blocks or not depends on the
boolean signaled state. The state is toggled by using the Set and Reset methods. The best way to observe and
understand the behavior of this object is to read the following code, type it in Visual Studio pointing two threads
to the two methods, and run it while watching the output window.

List<long> l = new List<long>(10);
ManualResetEvent mre1 = new ManualResetEvent(false);
ManualResetEvent mre2 = new ManualResetEvent(false);
private void AddFirstAndLast2()
{
 Thread.Sleep(500); // Give the other one a head start; it makes no difference.
 Debug.WriteLine(Thread.CurrentThread.Name + " is running");
 l.Add(1);
 l.Add(2);

 // Tell the other thread to do its job and wait for it to tell you.
 Debug.WriteLine(Thread.CurrentThread.Name + " signals and waits");
 mre2.Set();
 mre1.WaitOne(); // blocks here
 mre1.Reset();
 Debug.WriteLine(Thread.CurrentThread.Name + " is running");

 l.Add(5);
 l.Add(6);

 Debug.WriteLine(Thread.CurrentThread.Name + " signals and waits");
 mre2.Set();
 mre1.WaitOne(); // could also have been t2.Join() if t2 is available
 mre1.Reset(); // superflous
 Debug.WriteLine(Thread.CurrentThread.Name + " is running and ends.");
}

private void AddMiddle2AndMessage()
{
 // Wait for other thread to do its first set.
 Debug.WriteLine(Thread.CurrentThread.Name + " about to wait");
 mre2.WaitOne(); //blocks here
 mre2.Reset();
 Debug.WriteLine(Thread.CurrentThread.Name + " is running");

 l.Add(3);
 l.Add(4);

 // Tell it you are done and wait again.
 Debug.WriteLine(Thread.CurrentThread.Name + " signals and waits");
 mre1.Set();
 mre2.WaitOne();
 mre2.Reset();
 Debug.WriteLine(Thread.CurrentThread.Name + " is running and breaks in debugger");

 Debugger.Break();
 Debug.WriteLine(Thread.CurrentThread.Name + " ends. You hit F5.");
 mre1.Set();
}

Note that there is also an AutoResetEvent class that has just one difference from ManualResetEvent: It
automatically resets the object, so in the preceding code sample the calls to Reset could be omitted if an
AutoResetEvent class is used. The use of an AutoResetEvent is preferable when you know that multiple threads
are waiting on the event and you need to ensure that only one executes when the event is signaled.

Another object in the threading namespace is Mutex. A mutex is usually introduced first in threading textbooks
because, depending on how it is used, it can achieve the goals of most of the other synchronization objects.
However, it is more expensive in terms of performance and its primary advantage in Windows is for interprocess
communication, which is not available in the .NET Compact Framework because creating named mutexes is not
supported. Mutex is mentioned here simply to encourage you to visit its documentation.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

ThreadPool

In all of the preceding examples, threads were explicitly created. In real-world scenarios, though, most of the
time you should use a ThreadPool instead. A ThreadPool is a pool of threads. It starts out empty, and when your
code requests a new thread from the pool, the pool will keep the thread around for the next time your code
needs a thread again. The performance gains are impressive because a new thread need not be created most
times because threads that are idling in the pool can be reused. Also, threads need not be destroyed
immediately, which results in another performance gain. Finally, if an application were to create a large number

of tasks, the ThreadPool would create a maximum of 25 threads[1] and queue all other work items to be executed
when a thread became free. In addition to all the performance gains, it is also much easier to program against
the ThreadPool, as the following code example exhibits:

[1] In version 2.0, this is configurable through the SetMaxThreads method. In version 1.0, it is fixed at 256.

private void menuItem1_Click(object sender, EventArgs e)
{
 WaitCallback wc = new WaitCallback(RunsOnPoolThread);
 object someState = new object();
 ThreadPool.QueueUserWorkItem(wc, someState);
}

private void RunsOnPoolThread(object state)
{
 // do stuff on thread optionally using state
}

As you can see, using a thread from the pool is a single statement. As with the explicit thread creation, you
specify a delegate, but this one also accepts some state as an object, which can be useful if you need to pass
initialization data to the thread.

Using a thread pool should be the default choice, but it is not the best choice in some scenarios. If your thread
does not perform a task and then exit but rather stays alive for a very long period of time, potentially blocking on
some synchronization object, a dedicated thread is generally a better choice.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Understanding Threading and Application Shutdown

In Chapter 2, we state that an application terminates when its main form exits. The precise and more correct
statement is that an application terminates when all foreground threads have exited. If an application does not
create any threads, the only foreground thread is the main thread, and it terminates when the main form is
closed; hence the original statement is true for such applications. This means you must understand what
foreground threads are and how to ensure that they are terminated before the main form closes.

Background Threads

.NET threads can be foreground or background threads. By default, every thread explicitly created is a foreground
thread and every thread from the ThreadPool or otherwise created by the framework is a background thread.
Unless you want a thread to hold up the process when the user has indicated that it should close, you should
make all your threads background threads.

The way a thread is made to be background is by setting its IsBackground property to true before starting it. Our
advice is that you make this a good habit for every thread you create: Set to true its IsBackground property and
give it a Name. Think of these two property calls as part of the construction process.

An example that enforces this point was already presented earlier in this chapter. Revisit the deadlock example
with the two worker threads. When the two threads are deadlocked, try closing the application by using the
form's OK button. Notice how Visual Studio debugging does not end. Stop the application process from the
integrated development environment (IDE), and then set both threads' properties IsBackground=true. Run the
application again and observe it closely. We discuss thread termination further later in this chapter.

Another example is shown here:

// Start thread that will block.
private void menuItem1_Click(object sender, EventArgs e)
{
 Thread t = new Thread(new ThreadStart(this.KeepTheProcessUp));
 //t.IsBackground = true;
 t.Start();

 MessageBox.Show("Hit the Exit button. Is Visual Studio still debugging?");
}

ManualResetEvent mre = new ManualResetEvent(false);
private void KeepTheProcessUp()
{
 mre.WaitOne();

 MessageBox.Show("Never shown!");
 // Imagine more code here.
}

//Exit
private void menuItem2_Click(object sender, EventArgs e)
{
 this.Close();
 Application.Exit(); // utterly superfluous but just to emphasize the point!
}

You can uncomment the t.IsBackground = true; line to exhibit the desired behavior.

Unfortunately, the .NET Compact Framework implementation of IsBackground does not guarantee that behavior
always. One example is networking calls, that is, the managed sockets implementation internally creates worker
threads that will not terminate simply by exiting the application. More important, any threads that are blocked on
Platform Invocation Services (PInvoke) calls also are not terminated by the runtime when the application exits.
The net effect is that you should not rely on a thread not to hold up the process only because of its IsBackground
property. The property should be set on all threads but only as a backup mechanism and only when there is no

deinitilization code the thread must execute.

Also, background threads generally will not keep a process up because the runtime aborts them when the main
thread exits. Aborting threads is not a clean way to exit threads, and you should avoid using it. In other words,
design your applications in such a way that all threads can exit in a clean way when the application ends. We
examine this in the next section.

Thread Termination

A thread can be brutally terminated by using its Abort method. This technique is generally frowned upon and is
definitely the wrong way to cancel a job. Terminating a thread in such a manner may leave the application in an
indeterminate state internally. A better alternative is to use the approach used in one of the earlier examples in
this chapter when searching the store. Declare a boolean that is visible to both the worker thread and the main
thread. Set it from the main thread when it wants to cancel the job, and periodically read it from the worker
thread to cleanly exit its task. The termination is not immediate, and this is a good thing because the thread has
a chance to shut down and leave any state in a consistent safe state.

The technique just described for canceling a thread is identical to the technique you should use to exit an
application. Set to true a global static Boolean variable isClosing that the application is exiting, and ensure that
all your worker threads periodically check the variable and are prepared for a quick, clean exit. An ideal place to
set the variable is in the Form.Closing event, of course.

If your worker threads are blocked, they will not be able to check the global variable. You must do a few things to
prevent your worker threads from being blocked. First, ensure that from the Closing event handler you set all
synchronization objects to be signaled so that any blocked threads can return at that instance. Wherever in code
a thread blocks, on the next line ensure it checks the global isClosing variable; this is also true for statements
following a Monitor.Enter or lock statement.

In addition, for all threading, complete one final task. Always use overloads of blocking methods that accept a
timeout, to avoid deadlocks, among other things. For example, the Join and Wait methods shown earlier have
overloads that take a maximum number of milliseconds to block for; the return value of the method indicates
whether it returned because of success or because of a timeout. Also, as an alternative to the lock statement,
investigate the Monitor.TryEnter method.

Tip

Some of the previous examples demonstrate how the process does not exit because
a thread is holding it up even after the main form has closed. In those scenarios, to
exit your process we advise that you stop debugging using Visual Studio. If you
have run the application on the target and without using Visual Studio, you must
manually terminate the process, or another instance of your application will not
execute. One way to terminate is to use one of the remote tools, such as the
Remote Process Viewer, as mentioned in Chapter 4.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Using .NET Timers

Earlier in this chapter, we demonstrated the use of a System.Windows.Forms.Timer, and as stated there,
sometimes such a timer can fit a scenario in which implementing true threading would be overkill or would
introduce unwanted complexity. It is important to note that Windows Forms timers should be used only for very
short tasks because they are not precise and fire on the main thread, thus influencing UI responsiveness.

Another timer available to .NET Compact Framework applications is the System.Threading.Timer. This timer is
more accurate; it fires on a thread from the ThreadPool and is ideal for executing background tasks that do not
touch the UI when such tasks should occur after a defined interval. The following code example demonstrates
use of a threading timer:

System.Threading.Timer tmr;
private void menuItem1_Click(object sender, EventArgs e)
{
 object someState = new object();
 TimerCallback tmrClbck = new TimerCallback(this.AtSetInterval);
 tmr = new System.Threading.Timer(tmrClbck, someState, 5 * 1000, -1);
}

private void AtSetInterval(object state)
{
 // Do something.

 // done with this timer
 tmr.Dispose();
}

There are a few interesting points to make about the Timer:

A reference to the timer object must be kept because, like other .NET objects, it is eligible for garbage
collection.

The timer must be disposed of when it has served its purpose.

The timer has a method called Change that has a similar signature to its constructor.

For the last parameter in the example (which is the period parameter) a –1 was passed. Any other
numeric value would have resulted in the timer firing repeatedly at that interval. For that to happen, of
course, the timer should not be disposed of in the callback.

The last point is worth expanding a bit. If you do specify a period parameter, your callback method has to be
designed to be reentrant because it is conceivable that two thread pool threads can execute statements in the
method concurrently if the first invocation is still executing when the next one fires. It is for this reason that we
advise you always to pass –1 as the last value. If you do need the timer to fire again after a set interval and to
do so indefinitely, be specific about it in the callback. For example:

 private void AtSetInterval(object state)
 {
 // Do something.
 MessageBox.Show("Test");

 // Restart this timer.
 tmr.Change(5 * 1000, -1);
 }

This approach guarantees that regardless of what intervals are specified and how long the method takes to
execute, only one thread will ever be executing in the method.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

This code-heavy chapter has guided you through understanding why you may use threads and how they work at
the operating system level to writing code for marshaling data from worker threads to the main thread and the
various synchronization objects available to the .NET Compact Framework developer. The key points to take away
are the following:

Never block the user interface.

More threads does not equal more performance.

Avoiding race conditions and deadlocks is possible only through careful design and total knowledge of the
system under implementation. Simply testing for these conditions does not necessarily reveal threading
issues because such issues are hard to reproduce.

The System.Threading namespace is fairly rich in version 2.0, and you should become very familiar with it
before you write any threading code. This chapter only took you on a brief tour.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 12. Graphics Programming

In this chapter:

Drawing Images, Text, and Shapes 437

Handling Different Resolutions 447

Rotating Text 449

Reducing Flicker by Using Double Buffering 452

Using Advanced Formatting Techniques 456

Graphics programming skills are not only for games developers. A basic understanding of graphics programming
is useful to all developers, whether for creating a good-looking splash screen or for doing your own drawing in a
custom control so as to present a user interface (UI) to users that looks more polished and professional than one
that is built using only the standard Microsoft Windows Forms controls from the Microsoft Visual Studio 2005
Toolbox.

This chapter shows you how to perform simple graphics programming tasks and demonstrates skills you can use
to make your application stand out from the crowd.

Drawing Images, Text, and Shapes

The simplest way of displaying an image is to use the PictureBox control, with which most developers are
familiar. You can use a Form containing a docked PictureBox to implement a very simple splash screen (a
full-screen image that is displayed to the user while you run code in the background to set up the main form and
perform other setup tasks). You can display the splash screen Form at application startup by using code such as
that shown in Listing 12-1.

Listing 12-1. Logic to Display a Splash Screen During Application Startup

using System;
using System.Windows.Forms;

namespace MobileDevelopersHandbook.SimpleGraphic
{
 static class Program
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [MTAThread]
 static void Main()
 {
 // Display splash screen.
 SplashForm spFrm = new SplashForm();
 spFrm.Show();
 spFrm.Refresh();

 // Run setup code and display main form.
 Form1 frm1 = new Form1(spFrm);
 Application.Run(frm1);
 }
 }
}

Listing 12-2 shows the code for the splash screen for a smartphone application. Notice that the designer-
generated code is not shown in Listing 12-2. To get the sample working, you must drag a PictureBox onto the
form and dock it to fill the Form. Notice that in Listing 12-1 a reference to the SplashForm instance is passed to
the constructor of Form1; Form1 needs the reference to the SplashForm instance because it is responsible for
closing the splash screen when its construction work is complete.

Listing 12-2. Splash Screen Using a Docked PictureBox in a Form

using System;
using System.ComponentModel;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

namespace MobileDevelopersHandbook.SimpleGraphic
{
 public partial class SplashForm : Form
 {
 public SplashForm()
 {
 InitializeComponent();
 }

 private void SplashForm_Load(object sender, EventArgs e)
 {
 // Show full screen.
 this.ControlBox = false;

 // Load graphic into PictureBox.
 string path = GetApplicationDirectory();
 Image img = new Bitmap(Path.Combine(path, "graphic.jpg"));
 pictureBox1.SizeMode = PictureBoxSizeMode.StretchImage;
 pictureBox1.Image = img;
 }
 private string GetApplicationDirectory()
 {
 return System.IO.Path.GetDirectoryName(
 System.Reflection.Assembly.GetExecutingAssembly()
 .GetModules()[0].FullyQualifiedName);
 }
 }
}

In the sample application called SimpleGraphic, which you can find in the downloadable code for this chapter on
this book's companion Web site, the splash screen displays the graphic from the cover of this book before
displaying the application's main form (see Figure 12-1).

Figure 12-1. Displaying a full-screen image in a PictureBox

Understanding Painting Basics

All drawing in Windows Forms applications takes place in response to a Paint instruction from the Windows
operating system. Windows sends this instruction to a control whenever the operating system determines that
the portion of the screen the control occupies is invalid and must be repainted. This occurs in the following
situations:

When the control (or form) first is displayed

When the form or control is resized (which also occurs when the screen orientation switches between
portrait and landscape)

When a control that was placed in front of another becomes invisible

When you force a repaint by calling the Refresh or Invalidate method of the control

Windows sends a Paint instruction first to the container control (the Form or Panel) and then to any child controls
inside the container.

Internally, a control handles the Paint instruction in its Paint method, and it also fires the Paint event
immediately after executing the Paint method. Consequently, you can use one of two ways to do your own
drawing:

Capture the Paint event so that any drawing you do augments the built-in drawing of the control

Override the OnPaint method so that your own drawing completely replaces the built-in capabilities

If you are creating a custom control by extending an existing control and it requires custom drawing, you would
override the OnPaint method.

All drawing takes place through a System.Drawing.Graphics object. You can get a System.Drawing.Graphics
object in a number of ways:

In the PaintEventArgs object that is passed into the OnPaint method or the Paint event of a control

By calling the Control.CreateGraphics method

By calling the static (shared in Visual Basic) method Graphics.FromImage method, which returns a
Graphics object from an existing Image object, allowing you to draw on the existing Image

Important

All the System.Drawing objects, such as Graphics, Pen, and Brush, are thin
managed wrappers around native objects. Always dispose of them properly;
otherwise, you may run into memory management problems.

Drawing Images

A PictureBox is fine for displaying pictures, but if you want to display graphical content you compose yourself
from different components, you'll have to do your own drawing. You can enhance the splash screen example by
overriding the OnPaint method of a form. The OnPaint method takes a parameter of a PaintEventArgs object, the
Graphics property of which exposes the Graphics object through which all drawing takes place. The other
property of the PaintEventArgs object, ClipRectangle, gives the area to be drawn.

To draw an image on the form, you can simply use the DrawImage method of the Graphics object, as follows:

using System.Drawing;
...

 protected override void OnPaint(PaintEventArgs e)
 {
 using (Image backgroundImage =
 new Bitmap(System.Reflection.Assembly.GetExecutingAssembly()
 .GetManifestResourceStream("MobileDevelopersHandbook.Graphic.JPG")))
 {
 // Use the Graphics object from the PaintEventArgs.
 e.Graphics.DrawImage(backgroundImage, 0, 0);
 }
 }

Notice that in this example the graphics file called Graphic.jpg is an embedded resource, and hence you must
use the rather complicated code shown here to call Assembly.GetManifestResourceStream, which returns a
Stream that you pass to the Bitmap constructor. This differs from the example shown in Listing 12-1, where the
graphic was included in that project as a content file (meaning the Build Action property of the file is set to
Content so that it is deployed as a separate file alongside your executable).

Tip

When you include graphics as an embedded resource, you retrieve them from the
executing assembly using code similar to that shown in the preceding code sample.
Be careful to get the name right: resource names are case sensitive. In Solution
Explorer, the graphic file has the name Graphic.JPG, so when you add it as an
embedded resource (by setting the Build Action property of the file to Embedded
Resource), it takes the name MobileDevelopersHandbook.Graphic.JPG, where
MobileDevelopersHandbook is the default namespace for the project (set in the
project properties window). The resource name Graphic.JPG must use exactly the
same case as displayed in Solution Explorer. If you have trouble getting the correct
name, use the Assembly.GetManifestResourceNames method, which returns a
string array containing the names of all embedded resources.

Scaling Images

The code you just used does draw the image on the screen, but if you run the application on both the regular
smartphone emulator and also the quarter VGA (QVGA) emulator, you get an interesting result, as shown in
Figure 12-2. The image we use in this sample is an appropriate size for the higher-resolution 240 x 320 pixel
screen on the QVGA device, but on the lower-resolution 176 x 220 pixel display of the regular smartphone, the
image doesn't fit the display. (The sample shown in Listing 12-2 does not have this problem because it set the
SizeMode property of the PictureBox to PictureBoxSizeMode.StretchImage so that the graphic resizes to fit the
dimensions of the PictureBox.)

Figure 12-2. Graphic displayed on a QVGA device (left) but that is too big for the regular

smartphone display (right)

The answer is to use another form of the DrawImage function, one that takes a Rectangle parameter for the
destination, and another Rectangle that selects the source portion of the image to draw (in this example, you
draw all of the source image). In fact, if you are working through the examples in this chapter, you will soon add
some more shapes and text to the display, so to make space for these additional items, you can use the following
code to center the image and reduce it to 50 percent of the width of the display. In this particular example, you
can find the width of the display by obtaining the ClipRectangle property of the PaintEventArgs object that is
passed into the OnPaint method. The implementation of OnPaint now becomes the following:

using System.Drawing;
...

 protected override void OnPaint(PaintEventArgs e)
 {
 // Draw the main image.
 using (Image backgroundImage =
 new Bitmap(System.Reflection.Assembly.GetExecutingAssembly()
 .GetManifestResourceStream("MobileDevelopersHandbook.Graphic.JPG")))
 {
 // Fill the background.
 e.Graphics.Clear(Color.Black);

 // Draw the image, but scale it.
 // SourceRect is entire image.
 Rectangle srcRect = new
 Rectangle(0, 0, backgroundImage.Width, backgroundImage.Height);
 // Set destination rectangle to be 50 percent of the clipping
 // rectangle.
 Rectangle destRect = new Rectangle(
 0, 0, e.ClipRectangle.Width / 2, e.ClipRectangle.Height / 2);
 // Reposition origin to center the image on the screen.
 destRect.Location = new Point(
 (e.ClipRectangle.Width - destRect.Width) / 2,
 (e.ClipRectangle.Height - destRect.Height) / 2);

 // Draw the image.
 e.Graphics.DrawImage(backgroundImage, destRect, srcRect,
 GraphicsUnit.Pixel);
 }
 }

Important

Do not rely on the ClipRectangle property for determining the size of the screen. In
this case, it does equal the dimensions of the screen, but you cannot rely on that.
In some cases, the ClipRectangle might be less than the whole area covered by the
control that is being painted because Windows calls the OnPaint method only to
request painting of whichever area has become invalidated (in need of repainting).
For example, if a child control on the Form is made invisible, the OnPaint method of
its container (the Form) is called, but the ClipRectangle will contain only the
dimensions of the region where the child control was located.

Painting the Background

Notice the lines at the beginning of the OnPaint method just shown:

 // Fill the background.
 e.Graphics.Clear(Color.Black);

This is how you color in the background. Without this, the graphic is drawn center screen but is surrounded by
white. The Graphics.Clear method clears the entire drawing surface and fills it with the specified color.

Painting Shapes and Text

You can now add shapes and/or text to the drawing surface. The Graphics object includes the DrawRectangle,
DrawEllipse, DrawPolygon, DrawLines, and DrawLine methods for shapes and the DrawText method for text. You
can also use the FillRectangle, FillEllipse, FillPolygon, and FillRegion methods for filling a shape with a specified
color.

All these methods make use of one or more of the following objects:

Pen Used for drawing text and for the outlines of shapes. Set the Width, Color, and/or DashStyle
properties to affect how items drawn with the Pen appear.

SolidBrush Defines the background for text or the fill color for a shape. This has only one property: Color.

TextureBrush Similar to a SolidBrush, but fills in the drawn object using an image you select through its
Image property.

The following example shows how to create a Pen and a SolidBrush and how to use them to draw a Rectangle
with some text inside it. It also shows how to use the Graphics.MeasureString method, which is useful for
measuring the height and width of a string that is to be drawn using a particular font. It is used here so that the
size of the rectangle enclosing the text can be determined.

using System.Drawing;
...

 protected override void OnPaint(PaintEventArgs e)
 {
 // Draw text positioned inside a rectangle.
 string s = "Mobile Developers Handbook";

 // Set pen and font size.
 int penSize = 4;
 int fontSize = 10;

 using (Pen pen = new Pen(Color.Yellow, penSize))
 {
 using (Font font = new Font("Arial", fontSize, FontStyle.Regular))
 {
 using (SolidBrush brush = new SolidBrush(Color.White))
 {
 SizeF textSize = e.Graphics.MeasureString(s, font);

 // Create a rectangle with padding space between string

 // and box.
 int rectWidth = Convert.ToInt32((textSize.Width) + 10);
 int rectHeight = Convert.ToInt32((textSize.Height) + 10);
 Rectangle r = new Rectangle(
 (e.ClipRectangle.Width - rectWidth) / 2,
 e.ClipRectangle.Height - rectHeight - 15,
 rectWidth,
 rectHeight);

 e.Graphics.DrawRectangle(pen, r);
 e.Graphics.DrawString(s, font, brush,
 r.Left + 5, r.Top + 5);
 }
 }
 }
 }

Tip

Although not demonstrated in these code samples (for simplicity), it is good
practice to create pen/bitmap/brush objects beforehand when overriding the
OnPaint event and to reuse the same object instances inside the OnPaint event
handler because this method could be called a number of times and your
application would be slowed down by repeated object construction.

Wrapping Text

The example just shown works for short strings, but if you want to draw a long string, you may be required to
wrap it across one or more lines to ensure that it is readable. You can do this by using another override of the
DrawString method, which takes as its fourth parameter a RectangleF instance that defines the area to draw into
and as its fifth parameter a StringFormat instance. You can horizontally align the text to the left, center, or right
by using the Alignment property of the StringFormat object, and you can set wrapping and clipping behavior by
using the FormatFlags property. The following code fragment shows how to wrap and center-align a long string.
You can see how it appears in Figure 12-3.

 protected override void OnPaint(PaintEventArgs e)
 {
 using (Font font = new Font("Arial", fontSize, FontStyle.Regular))
 {
 using (SolidBrush brush = new SolidBrush(Color.White))
 {
 // Now draw a long string, but use a formatting rectangle and
 // a StringFormat object to wrap and align the text.
 string authors =
 "Authors: Andy Wigley, Daniel Moth, Peter Foot";

 // Define the destination rectangle.
 RectangleF layoutRectangle =
 new RectangleF(15, this.Height - 50, this.Width - 20, 100);

 // Create a StringFormat and set formatting flags.
 StringFormat strFmt = new StringFormat();
 strFmt.Alignment = StringAlignment.Center;
 strFmt.FormatFlags = StringFormatFlags.NoClip;

 // Draw the string.
 e.Graphics.DrawString(authors, font, brush, layoutRectangle,
 strFmt);
 }
 }
 }

Figure 12-3. Custom drawing used in a splash screen, made up of an image, text, a line, and a
shape

Drawing Lines

Drawing lines on a graphics surface is simple. Draw a simple line using the DrawLine method, or draw a line that
connects many points by using the DrawLines method. Use a Pen object to determine the color, thickness, and
dash style.

using System.Drawing;
...

 protected override void OnPaint(PaintEventArgs e)
 {
 // Draw Image (not shown) . . .

 // Draw Text and Rectangle (not shown) . . .

 // Draw a line with e.Graphics.DrawLine.
 // Create pen.
 using (Pen redPen = new Pen(Color.Red, 3))
 {
 int length = e.ClipRectangle.Width - 20;
 int x1 = 10;
 int y1 = 10;
 int x2 = length + 10;
 int y2 = 10;

 // Draw line to screen.
 e.Graphics.DrawLine(redPen, x1, y1, x2, y2);
 }
 }

The sample program ShapesLinesText, available in the downloadable code for this chapter on the book's
companion Web site, puts these three techniques together to present a more striking splash screen, as shown in
Figure 12-3.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Handling Different Resolutions

In the section titled "Scaling Images" earlier in this chapter, you learned how to scale an image to fit the display
area. That solution used the ClipRectangle property of the PaintEventArgs object to determine the size of the
area being repainted, and so works well on a standard 176 x 220 pixel smartphone display and also on a 240 x
320 pixel QVGA display.

However, the code shown previously in the section titled "Drawing Images, Text, and Shapes" is not optimized
for different resolutions. The pen width of 4 and font size of 10 display well on the standard smartphone (as
shown in Figure 12-3), but the text looks a little bit small when displayed on the QVGA device. That is because
the QVGA device displays text and graphics using a higher dots per inch (dpi). You must adjust the width and
font size on higher-dpi devices. See the sidebar titled "Understanding dpi, VGA, and QVGA" for an explanation of
the effect of dots per inch on the display size of graphics items you draw.

Understanding dpi, VGA, and QVGA

It's a common misconception that devices with a high-resolution display always have a larger
physical display. They often do, but the physical dimensions of a display area are dependent not
only on its resolution (the number of pixels it can display from left to right and from top to bottom)
but also on the dots per inch (dpi; the number of pixels it can display per inch).

Older Pocket PC devices had a 240 x 320 pixel display, also known as QVGA. (QVGA stands for
quarter Video Graphics Array, where VGA is the de facto graphics standard for computers, which
display images and text at a resolution of 640 x 480. Tthe old Pocket PC devices contain a quarter
of the total number of pixels contained in a standard VGA display; hence they are called QVGA.)
The dpi used on those older devices varied, but a typical figure was 96 dpi, giving physical
dimensions of approximately 2.5 inches by 3.3 inches.

Today, handheld devices come in many different screen configurations. Many manufacturers sell
Pocket PC devices that have VGA screens, but all manufacturers use a higher dpi on their higher-
resolution devices, usually 192 dpi. This results in physical dimensions of—yes—approximately 2.5
inches by 3.3 inches—the same as the older devices. What does change, though, is that the VGA
display looks much better. With certain built-in programs such as Microsoft Pocket Internet Explorer
and Microsoft Office Excel Mobile, you can zoom out the display to show more information, and the
high-dpi resolution means that you can see large amounts of very small text on the screen.
However, most standard functionality on a VGA device such as the Today screen, Settings, and so
on appears much the same as on a QVGA device, although the graphics are much sharper. The
important point to realize is that you do not necessarily see more on a VGA display, but rather you
see approximately the same amount of information that simply looks much better.

Of course, how you as a developer use the additional pixels on a VGA or other high-resolution
device is up to you. But it is usually a mistake to try to display very much more information. For
example, if you display text on a QVGA device using a font size of 8 points at 96 dpi and then
display the same text using the same font size on a VGA device at 192 dpi, the text appears much
smaller on the VGA device—so small that some users may find it hard to read, despite the higher-
quality display.

Graphics developers must be aware of the dpi of the display and modify the size of drawn objects
so that they look right to the user. You may be able to take advantage of a higher-resolution display
to display more information, but beware of the shrinking effect of a higher-dpi display. You can find
the dpi of the current display by using the Graphics.DpiX and DpiY properties.

If you are not doing any custom drawing, you do not have to worry about different resolution
displays. As explained in Chapter 2, "Building a Microsoft Windows Forms GUI," if you set the
AutoScaleMode property of your Form to Dpi, it takes care of resizing standard controls to maintain
appropriate physical dimensions according to the dpi of the device display.

One point all developers must remember is that if you are providing an icon for your application,
you must provide a 32 x 32 pixel icon for use on high-dpi devices as well as the 16 x 16 pixel icon
required for lower-dpi devices. You can set the icon for an application in the project properties
window; if you then build a .cab file to install your application, as explained in Chapter 6,
"Completing the Application: Packaging and Deployment," the icon is displayed in menus on the

device, such as in the Programs list on a Pocket PC.

The exact font sizes or pen widths you use on a higher-dpi display are application dependent and so are
something you must determine by testing. In the sample application, use the following code to increase the pen
width and font size for displays with a resolution greater than 100 dpi:

 // Set default pen and font size.

 int penSize = 4;

 int fontSize = 10;

 // Find dpi of the current display.

 float horResolution = e.Graphics.DpiX;

 if (horResolution > 100.0)

 {

 // Increase pen and font size on higher-resolution devices.

 penSize = 5;

 fontSize = 11;

 }

 using (Pen pen = new Pen(Color.Yellow, penSize))

 {

 using (Font font = new Font("Arial", fontSize, FontStyle.Regular))

 {

 ...

The effect is quite subtle, as shown in Figure 12-4, but by increasing the font size and pen width, the end result
is closer to that on a 96-dpi display, as shown in Figure 12-3.

Figure 12-4. Increasing the pen width and font size on a high-dpi display (right) to counteract

the shrinking effect

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Rotating Text

One addition to Microsoft .NET Compact Framework version 2.0 that is useful for working with text is support for
the LogFont class, which defines the characteristics of a font for creating rotated text effects. This class is in the
Microsoft.WindowsCE.Forms namespace, so you must add a reference to that assembly to use it.

The LogFont class is easy to use. Simply create a LogFont object, set properties to define the size and angle of
the font, and then call the Font.FromLogFont method to return the System.Drawing.Font instance you use for
drawing text. The following code shows a method you can use to do this:

using System.Drawing;
using Microsoft.WindowsCE.Forms;
...
 private const float POINTS_PER_INCH = 72f;

 private Font CreateLogFont(int angle)
 {
 // Create and define a LogFont structure.
 LogFont fontStruct = new LogFont();

 using (Graphics g = this.CreateGraphics())
 {
 // Scale 10 points for the dpi of the current display.
 // Also make it negative, which means match it against
 // character height of available fonts.
 fontStruct.Height =
 -1 * (int)(14f * (g.DpiY / POINTS_PER_INCH));
 }

 // Because font width is usually dependent on the height,
 // usual to set width to zero
 fontStruct.Width = 0;

 // Set the font angle.
 // Remember to multiply by 10.
 fontStruct.Escapement = angle * 10;

 // The Escapement member specifies both the
 // escapement and orientation. You should set
 // Escapement and Orientation to the same value.
 fontStruct.Orientation = fontStruct.Escapement;

 // No formatting
 fontStruct.Italic = 0;
 fontStruct.Underline = 0;
 fontStruct.StrikeOut = 0;
 // Weight: 0 = default, 400 = normal, 700 = bold
 fontStruct.Weight = 0;

 fontStruct.CharSet = LogFontCharSet.Default;
 fontStruct.OutPrecision = LogFontPrecision.Default;
 fontStruct.ClipPrecision = LogFontClipPrecision.Default;
 fontStruct.Quality = LogFontQuality.Default;
 fontStruct.PitchAndFamily = LogFontPitchAndFamily.Default;

 fontStruct.FaceName = "Arial";

 // Create the font from the LogFont structure.
 return Font.FromLogFont(fontStruct);
 }

Some of the properties of LogFont require further explanation, as shown in Table 12-1.

Table 12-1. LogFont Properties

Property Description

Height Specifies the height of the font in device units (pixels). If this field is 0, the
Windows CE font manager returns the default font size for the font family
requested in the PitchOrFamily or FaceName property.

Most of the time, however, you will want to use a font of a particular size.
The preceding code takes the size of a 10-point font, which is 10 + 2 points
for the size of the descent (the distance characters such as j descend below
the baseline) plus 2 points for the distance between one row of characters
and the next (known as the external leading value in the typesetting world).
The total size of 14 is then scaled to the screen resolution of the current
device by dividing the current vertical resolution (from Graphics.DpiY) by
72, which is the standard number of points per inch used in typesetting.

The final value is multiplied by -1 to force the font mapper to search for a
font with a character height equal to the requested value. If you leave this
value positive, the font mapper searches for a font with an equivalent cell
height.

Width Specifies the average character width. Because character width is generally
dependent on the font height, you should usually set this to zero so that the
Windows CE font manager computes the correct width for the height.

Escapement Set this to the required angle from the horizontal, but always remember to
multiply by 10. For example, the escapement value for 90 degrees is 900.

Orientation You must always set this to the same value as Escapement.

Weight Set this to a value between 1 (invisible) and 700 (bold). The value 0
represents the default value, which is 400 for normal weight.

After you have your font, you use it in the same way as any other, as shown in the following code fragment:

 protected override void OnPaint(PaintEventArgs e)
 {
 // Draw the image, but scale it.
 ... NOT SHOWN (same as before)...

 // Create string to draw.
 string drawString = "Mobile Developers Handbook";
 // Create font and brush.
 SolidBrush drawBrush = new SolidBrush(Color.Yellow);

 // Draw string to screen using the LogFont.
 using (Font ft = CreateLogFont(90))
 {
 e.Graphics.DrawString(drawString,
 ft,
 drawBrush,
 5,
 this.Height - 20,
 new
 StringFormat(StringFormatFlags.NoClip | StringFormatFlags.NoWrap));
 }

 base.OnPaint(e);
 }

This code, which is taken from the RotatedText sample in the downloadable code for this chapter on the book's
companion Web site, produces output as shown in Figure 12-5.

Figure 12-5. Rotated text drawn using LogFont

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Reducing Flicker by Using Double Buffering

You may have noticed that even with the relatively simple samples described so far, the screen does not paint all
at once. If you use more complex drawing, or you are trying to simulate animation effects by repeatedly
repainting an object while moving its position, you will notice a pronounced flickering effect that spoils the
results.

The solution to this issue is a technique called double buffering, which simply entails creating a background
buffer, drawing to the buffer, and painting the result to the screen only when all drawing is complete. One
implementation of double buffering is shown in Listing 12-3. (The designer-generated code is not shown; you
will have to hook up the Form.Resize event to get this to work.)

Listing 12-3. Drawing Using Double Buffering

using System;
using System.ComponentModel;
using System.Drawing;
using System.IO;
using System.Windows.Forms;
using Microsoft.WindowsCE.Forms;

namespace MobileDevelopersHandbook
{
 public partial class SplashForm : Form
 {
 // The background buffer for graphics double buffering
 protected Bitmap backBuffer;

 public SplashForm()
 {
 InitializeComponent();
 }

 private void SplashForm_Load(object sender, EventArgs e)
 {
 // Show full screen.
 this.ControlBox = false;
 }

 protected override void OnPaint(PaintEventArgs e)
 {
 if (backBuffer != null)
 {
 // You need a Graphics object on the buffer.
 using (Graphics gxBuffer = Graphics.FromImage(backBuffer))
 {
 // Fill the background.
 gxBuffer.Clear(Color.Black);

 using (Image backgroundImage =
 new Bitmap(System.Reflection.Assembly.GetExecutingAssembly()
 .GetManifestResourceStream("MobileDevelopersHandbook.Graphic.JPG")))
 {
 // Use the Graphics object from the buffer.
 gxBuffer.DrawImage(backgroundImage, 0, 0);
 }

 // Draw text positioned inside a rectangle.
 string s = "Mobile Developers Handbook";

 // Set pen and font size.
 int penSize = 4;
 int fontSize = 10;

 using (Pen pen = new Pen(Color.Yellow, penSize))
 {
 using (Font font =
 new Font("Arial", fontSize, FontStyle.Regular))
 {
 using (SolidBrush brush =
 new SolidBrush(Color.White))
 {
 SizeF textSize =
 e.Graphics.MeasureString(s, font);

 // Create a rectangle with padding space
 // between string and box.
 int rcWidth =
 Convert.ToInt32((textSize.Width) + 10);
 int rcHeight =
 Convert.ToInt32((textSize.Height) + 10);
 Rectangle r = new Rectangle(
 (e.ClipRectangle.Width - rcWidth) / 2,
 e.ClipRectangle.Height - rcHeight - 15,
 rcWidth,
 rcHeight);

 gxBuffer.DrawRectangle(pen, r);
 gxBuffer.DrawString(s, font, brush,
 r.Left + 5, r.Top + 5);
 }
 }
 }
 }
 // Put the final composed image on screen.
 e.Graphics.DrawImage(backBuffer, 0, 0);
 }
 else
 e.Graphics.Clear(this.BackColor);
 }

 protected override void OnPaintBackground(PaintEventArgs e)
 {
 // Make this a no-op—background is painted in OnPaint.
 }

 private void SplashForm_Resize(object sender, EventArgs e)
 {
 if (backBuffer != null)
 {
 // Dispose of the original one.
 backBuffer.Dispose();
 }

 // Create a new backbuffer of the correct size.
 backBuffer = new Bitmap(this.ClientSize.Width,
 this.ClientSize.Height,
 System.Drawing.Imaging.PixelFormat.Format32bppRgb);
 }
 }
}

In Listing 12-3, notice that the background buffer is declared as a private member of the class of type Bitmap.
The buffer is initialized in the Form.Resize event, which is a good place to do it because you can be sure to size
the buffer correctly for whichever screen orientation the user selects.

In the Form.OnPaint method, the technique is simply to get a Graphics object from the back buffer by using
Graphics.FromImage, draw to that Graphics object, and then draw the whole back buffer to the screen when you
are finished drawing. The essential statements are as follows:

 protected override void OnPaint(PaintEventArgs e)
 {
 if (backBuffer != null)
 {

 // You need a Graphics object on the buffer.
 using (Graphics gxBuffer = Graphics.FromImage(backBuffer))
 {
 gxBuffer.Clear(Color.Black);
 ...
 gxBuffer.DrawImage(backgroundImage, 0, 0);
 ...
 gxBuffer.DrawRectangle(...);
 ...
 gxBuffer.DrawString(...);
 }
 // Put the final composed image on-screen.
 e.Graphics.DrawImage(backBuffer, 0, 0);
 }
 else
 e.Graphics.Clear(this.BackColor);
 }

By using this technique, the drawing to the screen appears much smoother, resulting in a much more
professional presentation.

Overriding OnPaintBackground

If you take care of the drawing of the background in your main OnPaint method, you should override the
OnPaintBackground method of your Form to make sure it doesn't also try to paint the background. If you do not
override the OnPaintBackground method, you may see noticeable flicker, particularly if you have set the form
BackgroundColor property to a different color from the color you used to paint the background in the OnPaint
method.

In the sample shown in Listing 12-3, you can see that the background is painted in the OnPaint method by using
the statement gxBuffer.Clear(Color.Black). The OnPaintBackground method is overridden so that it does nothing.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Using Advanced Formatting Techniques

So far in this chapter, we have demonstrated the simpler drawing techniques. This section discusses three
techniques that add a little more sparkle to your graphics programming: using a gradient fill to start drawing
with one color and change to another color as you move across or down the drawing surface, drawing images
with a transparent background, and using alpha blending to draw an image with variable opacity.

Drawing Using Gradient Fill

Gradient fill is a pleasing effect in which you start drawing in one color that gradually changes to a different
color. You can paint this transition from top to bottom or from left to right by setting the appropriate flag. There
is no direct support for this effect in the System.Drawing classes, so you must use Platform Invocation Services
(PInvoke) to call the Microsoft Win32 GradientFill function. This technique is explained in the .NET Framework
Developers Guide in the Microsoft MSDN Library, so we do not repeat the description here. In the downloadable
code for this chapter on the book's companion Web site, we include a sample program called GradientFillExample
that paints a rectangle using gradient fill and then draws some vertically inclined text over the top of it. This
produces the output shown in Figure 12-6.

Figure 12-6. Drawing using GradientFill

Drawing Images with a Transparent Background

Bitmaps, JPGs, and the other graphics formats are always rectangular—images have colored backgrounds. In the

examples shown in this chapter, an image paints centrally on the screen, but you cannot see the background of
the image because it is black, and the background of the graphics surface is also filled with black.

You cannot always rely on this technique, however. What if a user decides to make the background blue? You
would have to prepare another graphic with a blue background. Instead, it's far easier to paint images with a
transparent background so that the painting of the image is completely independent of the painting of the
background. Fortunately, this is quite easy to do in the .NET Compact Framework. You do have to prepare the
image using a single background color, and it's a good idea to make this as garish a color as possible—one that
is not used in the main part of your image because you do not want to render any parts of the interior of your
image transparent as well. We demonstrate this technique in the ImageWithTransparency sample in the
downloadable code samples for this chapter on the companion Web site. In the ImageWithTransparency
program, we prepared a new version of the central graphic using a fetching pink color (you will have to imagine
it on this monochrome image):

To draw an image with transparency, create a System.Drawing.Imaging.ImageAttributes instance and call its
SetColorKey method. In the desktop .NET Framework, you can specify a range of colors, but in the .NET Compact
Framework you must specify the same color for the low color and for the high color range. A useful way of getting
the background color is by calling the Bitmap.GetPixel method on your Image object and selecting a pixel you
know is on the background, such as that at (0, 0), as demonstrated in the following code sample. Finally, call the
override of Graphics.DrawImage, which takes an ImageAttributes instance as its final parameter, as shown here:

 protected override void OnPaint(PaintEventArgs e)
 {
 using (Image backgroundImage =
 new Bitmap(System.Reflection.Assembly.GetExecutingAssembly()
 .GetManifestResourceStream("MobileDevelopersHandbook.Graphic.JPG")))
 {
 // Fill the background.
 e.Graphics.Clear(Color.Red);

 // The .NET Compact Framework supports transparency but with
 // only one transparency color.
 // The SetColorKey method must have the same color specified
 // for the low color and high color range.
 System.Drawing.Imaging.ImageAttributes attr =
 new System.Drawing.Imaging.ImageAttributes();

 // Sets the transparency color key based on the upper-left
 // pixel of the image
 attr.SetColorKey(((Bitmap)backgroundImage).GetPixel(0, 0),
 ((Bitmap)backgroundImage).GetPixel(0, 0));

 // Draw the image, but scale it to 50 percent of the clipping
 // rectangle.
 Rectangle destRect =
 new Rectangle(0, 0, e.ClipRectangle.Width / 2,
 e.ClipRectangle.Height / 2);
 // Reposition origin to center the image on the screen.
 destRect.Location = new Point(
 (e.ClipRectangle.Width - destRect.Width) / 2,
 (e.ClipRectangle.Height - destRect.Height) / 2);

 // Draw the image using the image attributes.
 e.Graphics.DrawImage(backgroundImage, destRect, 0, 0,
 backgroundImage.Width, backgroundImage.Height,
 GraphicsUnit.Pixel, attr);
 }

 // Other drawing (not shown) . . .
 . . .
 }

The ImageWithTransparency sample is a variant of the one used to demonstrate GradientFill. Although the
drawing of the gradient-filled rectangle and the lettering are not shown in the preceding code sample, the
background is no longer black, and the central graphic is drawn using transparency, as shown in Figure 12-7.

Figure 12-7. Graphic drawn using a transparent background

Drawing Using Alpha Blending

You can use the alpha blending technique to draw an image with a degree of opacity so that whatever was
previously drawn on the background can be seen through it. As with gradient fill, you must PInvoke to Win32
functions to use this technique. Alpha blending is supported only on Windows Mobile 5.0 and later. This
technique was first described in Chris Lorton's Weblog at blogs.msdn.com/chrislorton/archive/2006/04
/07/570649.aspx. This blog entry also describes a different way to do alpha blending from the one described
here.

The sample application in the downloadable code on the companion Web site uses a timer so that the Windows
Mobile logo is repainted every 50 microseconds (ms). Each repainting modifies the
BlendFunction.SourceConstantAlpha property, which controls the degree of opacity of the structure. The degree
of opacity starts at 0 (invisible) and ends at 255 (opaque). The BlendFunction structure is passed as an
argument to the AlphaBlend function, which does the actual drawing. The overall effect is that the Windows
Mobile logo fades in, as shown in Figure 12-8.

Figure 12-8. Fading in an image by using alpha blending

[View full size image]

To use alpha blending, first you must get the PInvoke function declarations right for the AlphaBlend function and
supporting structures. These are shown in Listing 12-4. See the Windows Mobile 5.0 software development kit
(SDK) documentation for precise details of the AlphaBlend function.

Listing 12-4. Function Declarations for Alpha Blending

using System;
using System.Runtime.InteropServices;

namespace MobileDevelopersHandbook.AlphaBlendExample
{
 // These structures, enumerations, and PInvoke signatures come from
 // wingdi.h in the Windows Mobile 5.0 Pocket PC SDK.

 public struct BlendFunction
 {
 public byte BlendOp;
 public byte BlendFlags;
 public byte SourceConstantAlpha;
 public byte AlphaFormat;
 }

 public enum BlendOperation : byte
 {
 AC_SRC_OVER = 0x00
 }

 public enum BlendFlags : byte
 {
 Zero = 0x00
 }

 public enum SourceConstantAlpha : byte
 {
 Transparent = 0x00,
 Opaque = 0xFF
 }

 public enum AlphaFormat : byte
 {
 AC_SRC_ALPHA = 0x01
 }

 public class PlatformAPIs
 {
 [DllImport("coredll.dll")]
 extern public static Int32 AlphaBlend(IntPtr hdcDest, Int32 xDest,
 Int32 yDest, Int32 cxDest, Int32 cyDest, IntPtr hdcSrc,
 Int32 xSrc, Int32 ySrc, Int32 cxSrc, Int32 cySrc,
 BlendFunction blendFunction);
 }
}

The source of the main form that does the drawing is shown in Listing 12-5. The constructor of the Form loads
the Image object from the bitmap file. The sample uses double buffering (described earlier in this chapter), so
the Form.Resize event handler handles creation of the background buffer. (Note that the designer code is not
shown here, and so you will have to wire up this event—and the Paint event—for this sample to work.)

The constructor also creates and starts a Timer that fires every 50 ms. In the Timer.Tick event handler, the code
simply increments the transparencyValue field by 10 each time (until it reaches the maximum of 255,
whereupon it stops the Timer), and then calls this.Refresh to force a repaint so that the Paint event fires.

In the Paint event, we create a Graphics object for the Image containing the logo using Graphics.FromImage and
set up the BlendFunction structure, setting the SourceConstantAlpha field to the current value of the
transparencyValue field. The AlphaBlend function requires the Hdc of both the image to be drawn and the
destination. (Hdc stands for "handle to a device context," where a device context [DC] is a mechanism that
Windows CE native drawing functions use for controlling access to a drawing destination.) We obtain the Hdc
information by using Graphics.GetHdc. Notice that you must call ReleaseHdc when you are finished with the Hdc
values.

Listing 12-5. Drawing with Alpha Blending

using System;
using System.ComponentModel;
using System.Drawing;
using System.Windows.Forms;

namespace MobileDevelopersHandbook.AlphaBlendExample
{
 public partial class Form1 : Form
 {
 protected Bitmap backBuffer;
 protected Image displayImage;
 byte transparencyValue = 0;
 Timer blendTimer;

 public Form1()
 {
 InitializeComponent();

 // Load the image to use with the AlphaBlend API.
 string path =
 System.IO.Path.GetDirectoryName(System.Reflection.Assembly.
 GetExecutingAssembly().GetName().CodeBase);
 displayImage =
 new Bitmap(path + @"\Microsoft_Windows_Mobile_logo.bmp");

 blendTimer = new Timer();
 blendTimer.Interval = 50;
 blendTimer.Tick += new EventHandler(blendTimer_Tick);
 blendTimer.Enabled = true;
 }

 void blendTimer_Tick(object sender, EventArgs e)
 {
 transparencyValue += 10;
 if (transparencyValue == 250)
 {
 transparencyValue = 255; // opaque
 blendTimer.Enabled = false; // Stop the timer.
 }

 // Force a repaint.
 this.Refresh();
 }

 protected override void OnPaintBackground(PaintEventArgs e)
 {
 // Make this a no-op to avoid flicker.
 }

 private void Form1_Paint(object sender, PaintEventArgs e)
 {
 if (backBuffer != null)
 {
 // You need a Graphics object to get a handle to the DC.
 using (Graphics gxBuffer = Graphics.FromImage(backBuffer))
 {

 // Because you made OnPaintBackground a no-op, take care
 // of painting the background here.
 gxBuffer.Clear(this.BackColor);

 // AlphaBlend takes two handles to the DC—one source and
 // one destination. Here's the source.
 using (Graphics gxSrc = Graphics.FromImage(displayImage))
 {
 IntPtr hdcDst = gxBuffer.GetHdc();
 IntPtr hdcSrc = gxSrc.GetHdc();

 BlendFunction blendFunction = new BlendFunction();
 // AC_SRC_OVER is the only supported blend operation.
 blendFunction.BlendOp =
 (byte)BlendOperation.AC_SRC_OVER;
 // Documentation says put 0 here.
 blendFunction.BlendFlags = (byte)BlendFlags.Zero;
 // Constant alpha factor
 blendFunction.SourceConstantAlpha = transparencyValue;
 // Don't look for per-pixel alpha.
 blendFunction.AlphaFormat = (byte)0;

 // Get x co-or based on bitmap width.
 int left = this.Width / 2 - (displayImage.Width / 2);
 int top = 100; // y co-or
 PlatformAPIs.AlphaBlend(hdcDst, left, top,
 displayImage.Width, displayImage.Height,
 hdcSrc, 0, 0,
 displayImage.Width, displayImage.Height,
 blendFunction);
 gxBuffer.ReleaseHdc(hdcDst); // Reqd cleanup to . . .
 gxSrc.ReleaseHdc(hdcSrc); // . . .GetHdc()
 }
 }

 // Put the final composed image on-screen.
 e.Graphics.DrawImage(backBuffer, 0, 0);
 }
 else
 e.Graphics.Clear(this.BackColor);
 }

 private void Form1_Resize(object sender, EventArgs e)
 {
 if (backBuffer != null)
 {
 // Dispose of the original one.
 backBuffer.Dispose();
 }

 // Create a new backbuffer of the correct size.
 backBuffer =
 new Bitmap(this.ClientSize.Width, this.ClientSize.Height,
 System.Drawing.Imaging.PixelFormat.Format32bppRgb);
 }
 }
}

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

This chapter explains a number of graphics drawing techniques you can use to paint on Forms and other controls.
It also explains a number of more advanced techniques such as painting using a gradient fill, painting images
excluding their background, and combining images using alpha blending.

Note that although the examples in this chapter all painted onto a Windows Form, you can use these techniques
also to paint in custom controls. With custom controls, which is the subject of Chapter 15, "Building Custom
Controls," you get the added advantage of inheriting the standard docking and anchoring behavior inherent in all
controls.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 13. Direct3D Mobile

By Rob Miles

In this chapter:

Getting Started with Direct3D 465

Working in Three Dimensions 469

Direct3D on Mobile Devices 491

Until recently, three-dimensional (3-D) graphics were beyond the capabilities of mobile devices. However, with
the launch of Microsoft Windows Mobile 5.0 and because systems contain more powerful processors and even
graphics coprocessors, we can now start to contemplate the use of three-dimensional graphics in programs
targeted for portable devices. In this chapter, we look at the fundamental concepts behind 3-D graphics and
show you how you can start to use the Microsoft Direct3D application programming interface libraries to create
graphical applications on mobile devices.

Getting Started with Direct3D

To use Direct3D, you don't actually need a phone handset or mobile device because you can do all the work on
the emulators provided by Microsoft Visual Studio .NET 2005 as part of the development environment. However,
the emulators do not run at a representative speed when drawing in three dimensions.

Using Direct3D in Your Programs

The Direct3D libraries are not included by default when you create a solution for a device running Windows
Mobile 5.0. To use them, you must add them as a reference to a Visual Studio 2005 project. The library you need
to add is Windows.Mobile.DirectX.

To make your program simpler, you can also add using directives at the top of your program to include the 3-D
graphics namespaces:

using Microsoft.WindowsMobile.DirectX;

using Microsoft.WindowsMobile.DirectX.Direct3D;

The Direct3D Device

All the drawing in the Direct3D program is performed by an instance of the Device class. This is an object that
represents a graphics display device in a computer system. On a desktop computer, the Device maps to a
physical adapter connected to a monitor. On a Windows Mobile 5.0–powered system, the Device drives the
display hardware. You ask a device instance to draw objects for you, and it acts on these requests in the manner
appropriate for the actual underlying hardware.

The actual range of options and commands that a given graphics Device can understand and act on varies from
one platform to another. You can use methods to find out the capabilities of a given device. For the purpose of
brevity, we use the set of options known to be offered by devices that run Windows Mobile 5.0.

When a Device instance is created, it is given information to describe how it is to use system resources and
generate the display. You must set up these presentation parameters prior to the construction of the device. A
sequence of statements to construct a device that works on a system running Windows Mobile 5.0 is as follows:

public void Init()

{

 PresentParameters presentParams = new PresentParameters();

 presentParams.Windowed = true;

 presentParams.SwapEffect = SwapEffect.Discard;

 device = new Device(

 0, // device number 0

 DeviceType.Default, // default configuration

 this, // reference to the parent window

 CreateFlags.None, // no special creation flags

 presentParams); // the presentation parameters

}

The Init method creates a device that we can ask to draw objects for us. You create the device only once when
the program starts, and then you use a reference to the device in the method calls that control the drawing
process.

Only two items in the PresentParameters instance must be set. The 3-D display on a mobile device is always
windowed. At present, we do not use any back buffers to draw images prior to display, so we can set the
SwapEffect to the Discard option. A back buffer is an area of memory where a graphics card can assemble the
graphics image before copying it to the display memory. The copy process is usually synchronized with the
update rate of the monitor attached to the graphics card. However, on the mobile platform we don't have a
monitor as such, so we can operate without a back buffer.

The device constructor that we use accepts five parameters:

The first item is the device number. (This is used for systems with more than one graphics device
—number 0 is always the default graphics device.)

The second is the DeviceType selection for this device. Under Windows Mobile 5.0, this is always the
default (DeviceType.Default) configuration.

The third item is a reference to the parent form. Because these statements are running inside an instance
of a Form class, you can simply pass the constructor a reference to this.

With the fourth item, you can specify any special flags to control the behavior of the device after it is
created.

Finally, you supply the presentation parameters.

Important

If any of the device creation parameters are incorrect, the Device constructor will
throw an exception. You should include code to handle this in your production code.

The Draw Process

Now that you have an instance of a device, you can ask it to draw objects. The best place to do this is in the
OnPaint method of the parent Windows Form.

protected override void OnPaintBackground(PaintEventArgs e)

{

}

protected override void OnPaint(PaintEventArgs e)

{

 Render();

}

The OnPaint method for the form has been overridden and calls the Render method, which uses the Device
instance to draw. Note that the OnPaintBackground method also was overridden and replaced with an empty
method. This is to stop the normal form background clear behavior from affecting the drawing. The Render
method uses the Device to draw:

private void Render()

{

 device.Clear(ClearFlags.Target, Color.White, 1.0f, 0);

 device.BeginScene();

 device.EndScene();

 device.Present();

}

The Clear method requests that the device clear the display. The clear operation can target different items
through the ClearFlags enumeration; the preceding code example requests that the target of the device be
cleared. You can supply the color to clear the screen for the operation. The final two parameters are the Z-depth
(concerned with the clearing of 3-D images) and the clearing stencil to use (which you can leave at 0 for now).
The clearing stencil is a means by which you can get advanced graphical effects by controlling which bits in the

pixels are set to 0 when the buffer is cleared. Bits in the display pixels are combined with the stencil using the
logical AND operation. Setting all the bits in the stencil to 0 ensures that the values are all cleared to 0.

After the device has been cleared, you begin the scene drawing process by calling BeginScene. At the moment,
you don't have anything to draw, so you end the process right afterward by calling EndScene. Finally, the Present
method asks the device to present the image for viewing. Listing 13-1 is a complete version of this first graphics
program and shows all the components brought together in a form.

Listing 13-1. A Complete Graphics Program

public partial class GraphicsForm : Form

{

 /// <summary>

 /// Device we are going to use to render our graphics

 /// </summary>

 private Device device;

 public GraphicsForm()

 {

 InitializeComponent();

 }

 public void Init()

 {

 PresentParameters presentParams = new PresentParameters();

 presentParams.Windowed = true;

 presentParams.SwapEffect = SwapEffect.Discard;

 device = new Device(

 0, // device number 0

 DeviceType.Default, // default configuration

 this, // reference to the parent window

 CreateFlags.None, // no special creation flags

 presentParams); // the presentation parameters

 }

 protected override void OnPaintBackground(PaintEventArgs e)

 {

 }

 protected override void OnPaint(PaintEventArgs e)

 {

 Render();

 }

 private void Render()

 {

 device.Clear(ClearFlags.Target, Color.White, 1.0f, 0);

 device.BeginScene();

 device.EndScene();

 device.Present();

 }

}

Getting a Direct3D Program Running

You use a different process to start a graphics application from the one you use for a normal Windows
application. It is important that you call the initialize method before the form is displayed and the application
runs. The sequence is as follows:

static class Program

{

 /// <summary>

 /// The main entry point for the application

 /// </summary>

 [MTAThread]

 static void Main()

 {

 using (GraphicsForm frm = new GraphicsForm ())

 {

 frm.Init();

 frm.Show();

 Application.Run(frm);

 }

 }

}

Although this process looks mostly similar to the way in which Windows applications usually begin running, note
that the graphics initialization is called on the instance of the GraphicsForm before the Show method. If the
GraphicsForm class is created and run as shown in the preceding code sample, the screen of the target device
will turn white. Then, you have to create some objects in three dimensions and have them rendered.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Working in Three Dimensions

Until now, all the code samples in this chapter have simply drawn in two dimensions. The items have been drawn
at a given position on the screen that is expressed as two numbers, X and Y. The X value (or X coordinate)
specifies how far across the screen the image is to be drawn, and the Y value (or Y coordinate) specifies how far
down the screen the image is to be drawn. You can move images from left to right by changing the X value, and
similarly you can move images up or down by changing the Y value.

The first thing you must understand is that when you draw in three dimensions, you need a third value (or
coordinate) to specify the location in the third dimension. This value is expressed as the Z coordinate. Such a
position, or point in space, is referred to as a vertex. A vertex is held in Direct3D as three values, for X, Y, and Z.
Unlike integer coordinates, these values are floating point, that is, real numbers.

Rendering a Triangle

In 3-D graphics, traditionally the first thing you draw is a triangle, so that is how we shall start. Actually, this is a
very sensible tradition because given enough triangles you can draw anything. The triangle is the fundamental
building block of every graphical scene.

The position of a triangle can be specified by three vertices. You are going to make your vertices slightly more
interesting in that as well as a position in space the vertex structure that you are going to use will also specify
the color at that vertex. Direct3D provides several different types of vertex, depending on the needs of the
program at the time. The Direct3D class CustomVertex holds a number of different vertex structures; among
them is one called PositionColored that you will use to define the vertices of a triangle. If you create an array of
CustomVertex structs, you can use this to specify the triangle:

CustomVertex.PositionColored[] vertices =

 new CustomVertex.PositionColored[3];

vertices[0].X = 0.0f;

vertices[0].Y = 1.0f;

vertices[0].Z = 0.0f;

vertices[0].Color = Color.Red.ToArgb();

vertices[1].X = 1.0f;

vertices[1].Y = -1.0f;

vertices[1].Z = 0.0f;

vertices[1].Color = Color.Green.ToArgb();

vertices[2].X = -1.0f;

vertices[2].Y = -1.0f;

vertices[2].Z = 0.0f;

vertices[2].Color = Color.Blue.ToArgb();

By default, the coordinates have their origin (0,0) in the very middle of the screen and each edge is 1.0 away:

X = –1.0 means the left-hand edge; X = +1.0 means the right-hand edge.

Y = –1.0 means the bottom of the screen; Y = +1.0 means the top.

The Z value controls how far "into" the screen the triangle is drawn. For the preceding triangle, we have
left this value at 0.

You might think that all you need to do now is ask the device to render the array and draw the triangle. However,
it is not quite as simple as that. You can view the graphics device as a kind of factory that works on a bunch of
scene data and churns out an image based on it. The input to the "factory" must be supplied as a vertex buffer
that contains all the items to be drawn.

A program using Direct3D assembles a set of vertices into a vertex buffer and then gives this to the device to
render. The program must make a vertex buffer using the triangle data. This is done as follows:

// Create a vertex buffer to hold the triangle information.

vertBuffer = new VertexBuffer(

 typeof(CustomVertex.PositionColored), // type of the buffer

 3, // holding 3 vertices

 device, // for our device

 Usage.WriteOnly, // never going to read it

 CustomVertex.PositionColored.Format, // source format

 Pool.SystemMemory); // mobile 3D requires this

// Set the data in the vertex buffer to your triangles.

vertBuffer.SetData(vertices, 0, LockFlags.None);

Don't worry too much about the extra parameters just now. The program now has a vertex buffer containing the
data that describes the triangle to be drawn; now you just have to use it in the Render method:

private void Render()

{

 device.Clear(ClearFlags.Target, Color.White, 1.0f, 0);

 device.BeginScene();

 // Point the device at the vertex buffer.

 device.SetStreamSource(0, vertBuffer, 0);

 // Ask the device to draw the contents of the buffer.

 device.DrawPrimitives(PrimitiveType.TriangleList, 0, 1);

 device.EndScene();

 device.Present();

}

A VertexBuffer holds information about the vertices that you would like to have drawn by the graphics device.
There are many different types of vertices. You select the type of vertex you need depending on what you want
to have drawn. In this first example, you are describing the position and color of the points of a triangle, so the
PositionColored vertex is the one to use.

Later, you will want to use different kinds of vertices, for example, ones that map points in the scene to positions
in textures. You create a vertex buffer to hold vertices of a particular type. A draw operation is then directed at a
particular vertex buffer and uses the information in the buffer to describe what is to be drawn. You can think of
the vertex buffer as being stored inside the graphics adapter (because this is how it would work on a machine
with a separate display device). This makes it easy and quick for the device to access the buffer when it is
drawing, but it means that changing the content of the vertex buffer from your programs will be slow.
Fortunately, as we describe later, you can move objects around the screen without changing the content of the
vertex buffer.

The last thing you must do is to tell the Direct3D device that you are setting the colors of the objects. You do this
by adding the following line when you have created your device:

device.RenderState.Lighting = false;

Later, you add lights to the scene. But at this point, you have a complete program that renders a triangle, as
shown in Figure 13-1. Note that Direct3D interpolated colors between the points of the triangle.

Figure 13-1. A simple triangle

Understanding Coordinates and Viewing

Right now, you might think that drawing in three dimensions isn't that different from drawing in two. Because
the value of Z is the same for all the vertices, you are drawing everything in the same plane. In Direct3D, the
bigger the value of the Z coordinate, the further "into" the screen the vertex is supposed to be.

To explore the way that changes to the positions of the vertices affect the display, you can create an application
that you can use to move the triangle.

Moving an Object in Three Dimensions

One way to move an object is to update the values in the vertices and then redraw it.

private float step = 0.2f;

private void moveLeft()

{

 vertices[0].X -= step;

 vertices[1].X -= step;

 vertices[2].X -= step;

 updateTriangle();

}

private void moveRight()

{

 vertices[0].X += step;

 vertices[1].X += step;

 vertices[2].X += step;

 updateTriangle();

}

The methods moveLeft and moveRight update the appropriate coordinate element in each of the vertices in the
triangle. If these vertices are then reloaded into the vertex and the scene is redrawn, the triangle appears to
move in the appropriate direction.

private void updateTriangle()

{

 Text = "X:" + vertices[0].X +

 " Y:" + vertices[0].Y +

 " Z:" + vertices[0].Z;

 vertBuffer.SetData(vertices, 0, LockFlags.None);

 Invalidate();

}

The methods can be bound to keyboard events so that you can write a program that will move the triangle
around the screen.

The program MoveTriangle, which is included in the downloadable code for this chapter on the book's companion
Web site, allows you to manipulate the position of a triangle in this way. However, if you run the program, you

will notice that it has a problem. Although you can change the position of the triangle by changing the X and Y
values to make it move left or right and up or down, changing Z (that is, trying to move toward or away from the
triangle) does not have any effect. If you make the value of Z more than 1 or less than 0, the triangle disappears
completely, which seems very strange. This is because you must give Direct3D more information about the
drawing process.

Important

We use this form of position manipulation to demonstrate how changes to the
coordinate values affect the position of objects in a scene. It is not very efficient to
update an existing VertexBuffer every time you have to move an object because it
entails the following operations: reading out the old vertices, modifying them, and
then storing them back in the buffer. On modern 3-D hardware, this buffer is on the
Video RAM and accessing it is slow. There is a much more efficient way of
transforming positions that involves the use of matrices to describe how to move,
scale, or rotate vertex positions. We explore this technique later in the chapter.

From Programmer to Film Director

If you are drawing in two dimensions, life is very easy. You just use X and Y values to identify the pixel that you
want to work with. In three dimensions, however, things are more complex. With the X, Y, and Z coordinate
system, you can specify where objects are in the 3-D world, but the coordinates do not specify what the view of
objects should be.

Figure 13-2 shows an object on a stage. You can set up a coordinate system to use to tell the computer about
every single point (or vertex) in this scene. You could say that the tip of the chess piece is at X = 150, Y = 200,
and Z = 10, and that the base is at X = 125, Y = 150, and Z = 9. However, where the object appears in a view of
the scene depends on where the viewer is when he or she looks at it and the direction from which the viewer is
looking.

Figure 13-2. Object on a stage

The view that you have of a scene is as much a product of where you are looking from and the direction in which
you are looking as it is the objects contained in the scene. You must give Direct3D this information so that it can
transform the 3-D coordinates into the colored pixels on a screen.

To draw the 3-D scene, you have to position a Direct3D "camera" in the graphics world, point it in the right
direction, and hold it the right way up. Fortunately, the designers of the system have found a way to make this
easy for the programmer. You start by setting the View property of the device:

device.Transform.View = Matrix.LookAtLH(

 new Vector3(0.0f, 0.0f, -5.0f), // camera position

 new Vector3(0.0f, 0.0f, 0.0f), // camera target

 new Vector3(0.0f, 1.0f, 0.0f) // camera up vector

);

This gives the transformation required to get from "world" coordinate space (that is, the coordinates that express
the position of the objects you want to draw) to "screen" coordinates (the position on the screen). The
transformation is expressed as a matrix. The static method LookAtLH in the Matrix class creates this matrix,
which is then set as the Transform.View property of the device created earlier.

Matrices

It is difficult to get very far in 3-D graphics without dealing with matrices and transformations. Put simply, a
transformation matrix is a lump of data that is used to describe mathematically something you would like to do
with the position of a vertex. You might want to slide the vertex left or right, scale the vertex so that its values
get bigger or smaller, or rotate the vertex to a particular angle.

If you think about it, these are exactly the moves you want to do with the camera. You may want to move the

camera in or out (move in on the subject), pan it left or right (slide/translate it), or twist it around (rotate). So a
matrix is the ideal form to express camera position and how you are using the camera to view the scene.

You can create a matrix by hand using the appropriate geometry to express how this transformation will be
achieved, but DirectX provides a method in the Matrix class that does the work for you. This method is called
LookAtLH. The LH stands for "left-handed," which has to do with the way that the Z direction travels in relation to
the X and Y coordinates. For now, you can interpret it as meaning that the bigger the Z value is, the further into
the screen that vertex is.

You must give the method the position of the camera in 3-D space, the direction in which the camera is looking,
and the direction that is considered "up." You can express each of these as the value of a vertex.

In the preceding code, the camera is placed at X = 0, Y = 0, Z = –5. Remember that the bigger Z is, the further
into the screen the vertex is. A value of –5 pulls the camera back "out" of the screen. The more negative that you
make Z, the further out of the screen the camera is placed, that is, a Z value of –10 moves the camera back even
farther, and so everything is drawn smaller because it is farther into the distance.

The camera is pointed at X = 0, Y = 0, Z = 0. This is the origin of the coordinate system and is at the very center
of the display. That means that anything placed on the origin will seem to be in the middle of the screen. If you
want to change the position in which the camera is pointed, that is, pan the camera, change this value. For
example, to pan left make the value of the X coordinate smaller.

The vertex X = 0, Y = 1, Z = 0 specifies the up direction. If you are wondering how a vertex can be used to
express a direction, think in terms of a line drawn from the origin to the vertex position. A line that goes from
one point to another is called a vector. In this case, the vertex is used to describe a vector that points up. This
means that from the camera's point of view, Y goes up, which means that the camera is presently lined up with
the horizon. If you want to tilt the camera, change the position of the vertex. To lay the camera on its side, so
that "up" is along the floor, you could use X = 1, Y = 0, Z = 0.

Perspective and Transformations

You now have a camera set up and pointing in an appropriate direction, but you must also tell Direct3D how the
scene is to be viewed. Do this by creating another matrix that controls the projection of the scene data. Direct3D
provides a static method in the Matrix class that you can use to create this matrix. You must give this method
some details about the view you want the camera to have:

device.Transform.Projection = Matrix.PerspectiveFovLH(

 (float)Math.PI / 4, // field of view

 1.0f, // aspect ratio

 1.0f, // near Z plane

 100.0f // far Z plane

);

The first parameter is the field of view. This is analogous to selecting a particular lens for the camera you are
using to take the picture. The field of view is expressed as an angle given in radians. The preceding value
(equivalent to 90 degrees) is very like putting a standard lens on the camera. If you increase the angle value,
you can see more of the scene, as you would if you used a wide-angle lens. If you decrease the angle, you see a
narrow view, as you would if you used a telephoto lens.

The second parameter is the aspect ratio. This gives the ratio of the width to the height of the display device. It
controls how the image rendered by Direct3D is stretched to fit the shape of the screen. This is analogous to
filming in widescreen or normal. If the aspect ratio is not set correctly, circles are drawn as ellipses, and squares
appear to be rectangular. An aspect ratio value of 1 tells Direct3D that the display is square. You might want to
change this to reflect the shape of the device that you are using. You can compute the value by using the height
and width properties of the buffer into which the graphics are being drawn:

float aspectRatio =

 ((float)device.PresentationParameters.BackBufferWidth) /

 device.PresentationParameters.BackBufferHeight

The next two parameters are information to help the Direct3D rendering process. They tell the system which
parts of the scene you are interested in having drawn. If you return to the chess piece in Figure 13-2, you can
see that the only parts of the scene that need to be drawn are those on the stage, that is, between the front of
the stage and the dark backdrop at the back of the stage. The third parameter, the near Z plane, gives the
distance from the camera to the "front" of the stage. Anything closer to the camera than this distance will not be
drawn. The fourth parameter, the far Z plane, gives the distance from the camera to the "back" of the stage.
Anything beyond the back of the stage will not be drawn.

This transformation matrix that is created by the call of PerspectiveFovLH also tells Direct3D that you want to use
perspective, that is, objects farther away from the camera must be drawn smaller than are objects closer to it.

After Direct3D knows the view transformation and the projection transformation, it can render scenes.

Transformations and Animations

At this point, you know how to position an item in world space and then place a camera to view it. However, the
image is static. What you do next is add some animation so that the image appears to move. You can add
animation by adding a transformation to the drawing process. This is another matrix that describes how
coordinates are to be changed.

The good news is that you don't actually have to create the matrix yourself—as with the view and projection
matrices, you can ask Direct3D to do all the hard work:

device.Transform.World = Matrix.RotationZ(rotateAngle);

This tells Direct3D that when it draws items in the world, it must transform their positions by using the matrix
that you have created.

The transformation matrix that we create using the RotationZ method in the Matrix class specifies a rotation
about the Z-axis by the angle supplied. The result of this transformation is that when the scene is redrawn,
everything is rotated around the Z-axis by the angle specified.

However, what you really want is something that moves. You can make an object appear to move by repeatedly
drawing the scene using different angles of rotation. This animates the 3-D scene; just drawing objects in
slightly different positions makes 2-D items appear to move:

float rotateAngle = 0.0f;

float rotateStep = 0.02f;

private void redrawScene ()

{

 device.Transform.World = Matrix.RotationZ(rotateAngle);

 rotateAngle += rotateStep;

 Invalidate();

}

You can attach the method redrawScene to a timer and call it at regular intervals. Each time it is called, it
creates a new transformation matrix and then invalidates the display so that the display is redrawn.
Alternatively, you can call reDrawScene after each display update. This arrangement, where the scene is
repeatedly redrawn at maximum speed, gives the highest possible update rate, but it might not be appropriate
for all applications because the speed of the redraw varies on different platforms. We recommend that you use a
system in which you use a timer to trigger the redraw; this arrangement allows a program to draw at the same
speed on all platforms.

Figure 13-3 shows the triangle rotated. Remember that Z is the axis that goes into the screen, and so the
triangle spins around its midpoint if you rotate around the Z-axis. The project RotateTriangle in the downloadable
code for this chapter on the book's companion Web site contains a program that produces this display.

Figure 13-3. A rotated triangle

Important

The speed at which the animation takes place depends greatly on the performance
of the target hardware. The emulators are not able to use any graphics acceleration

that may be present in some devices. If you run the RotateTriangle program in an
emulator, you will see the triangle spin very slowly and jerkily.

Adding More Complicated Transformations

The triangle now moves, but it is not really in three dimensions yet. It would be nice to be able to rotate it
around several axes at once. Direct3D provides a way to do this:

// rotation about Y

float yawAngle = 0.0f;

float yawStep = 0.01f;

// rotation about X

float pitchAngle = 0.0f;

float pitchStep = 0.001f;

// rotation about Z

float rollAngle = 0.0f;

float rollStep = 0.0001f;

private void redrawScene()

{

 device.Transform.World = Matrix.

 RotationYawPitchRoll(yawAngle, pitchAngle, rollAngle);

 yawAngle += yawStep;

 pitchAngle += pitchStep;

 rollAngle += rollStep;

 Invalidate();

}

This code is similar to the previous method, but the triangle is now rotated around all three axes at different
speeds to give it a much more interesting motion. Unfortunately, this code sample also seems to be faulty in that
when you run it the triangle rotates until it is on its edge, and then it vanishes, only to reappear later.

The triangle vanishes because of the way that Direct3D tries to save on the amount of drawing it must do.
Essentially, Direct3D decides that when the triangle has its "back" to you, there is no need to draw it. Direct3D
can tell when the triangle's back is to the viewer by examining the order in which the vertices are presented for
drawing.

Figure 13-4 shows the vertices that make up the triangle. They are created in the order shown. When they are
drawn, the points are visited in a clockwise sequence. However, if the back of the triangle is being drawn (that is,
if you are drawing the triangle from the point of view of the back of the diagram), the points are visited in a
counterclockwise sequence. Direct3D can detect this and decide that, because the rear of the triangle is being
drawn, there is no need to draw it on-screen. In other words, this technique allows Direct3D to decide not to
draw triangles that are not facing the viewer.

Figure 13-4. The triangle draw order

This process, called culling, makes sense when drawing three-dimensional structures that are made up of
triangles. Triangles that are facing away from you (that is, those on the far side of the structure) would be on the

"back" of the item and so would not be visible anyway.

However, at the moment, because all you are drawing is a single triangle, you do want the back of the triangle to
be drawn, so you must turn off culling. You do this by altering the cull mode of the device. By default, Direct3D
operates counterclockwise culling. Any triangles that present their vertices to be drawn in this order will not be
drawn. However, you can set the cull mode to perform no culling at all. By adding the following line, you tell
Direct3D to always draw the triangle, irrespective of the way the triangle is facing.

device.RenderState.CullMode = Cull.None;

Turning off triangle culling is necessary if you want to see the "backs" of your surfaces. However, you may also
find it useful to turn off culling if you draw surfaces that always show their faces toward the camera. In such
cases, there is no need to make the renderer decide whether to draw a triangle, so turning off culling can
improve drawing speed.

Adding Textures

The current version of the drawing program produces a colored triangle. Each vertex in the scene specifies the
location and color of a point that is part of the triangle, and Direct3D interpolates between the colors as it draws
the surface. You can also use Direct3D to draw surfaces that contain textures. A texture is a bitmap image that
you can add to a scene. When Direct3D draws a triangle with texture, it must have a mapping between a
particular vertex and a position in the texture. You supply the mapping by using a different kind of
CustomVertex, the PositionTexturedVertex. Rather than the vertex storing the triangle's color, it instead holds its
texel coordinate. A texel coordinate is the position in a texture. For example, consider how you add a texture as a
background to the scene. The image to be added is a rectangle, which is constructed out of two triangles. Figure
13-5 shows how texels are used to express the position parts of the texture.

Figure 13-5. Texel coordinates in a texture

The origin of the texel coordinates is 0,0. The texel value can range up to 1.0 in either direction, The diagram
shows how the texture is broken into triangles. The code to create the vertices for these triangles is as follows:

BackgroundTexture = TextureLoader.FromStream(device, textureStream);

Vertices = new CustomVertex.PositionTextured[6];

Vertices[0] = new CustomVertex.PositionTextured(-sz, -sz, z, 0.0f, 0.0f);

Vertices[1] = new CustomVertex.PositionTextured(-sz, +sz, z, 0.0f, 1.0f);

Vertices[2] = new CustomVertex.PositionTextured(+sz, -sz, z, 1.0f, 0.0f);

Vertices[3] = new CustomVertex.PositionTextured(+sz, -sz, z, 1.0f, 0.0f);

Vertices[4] = new CustomVertex.PositionTextured(-sz, +sz, z, 0.0f, 1.0f);

Vertices[5] = new CustomVertex.PositionTextured(+sz, +sz, z, 1.0f, 1.0f);

This code defines two triangles, centered on the origin. The value in sz is used to control the size of the triangles,
and the value in z gives the distance of the triangle into the frame (that is, the higher the z, the farther away the
background will be). The last two values in the constructor for each vertex are the two values (called u and v)
that define the position on the texture to which each relates. If you examine the code in relation to the image
shown in Figure 13-5, you can see that the triangle corners map to the edges of the texture so that the entire
texture is drawn. Rendering a texture is similar to drawing ordinary vertices except that the drawing device must
be given the texture as well:

// Set the data in the vertex buffer to your triangles.

VertBuffer.SetData(Vertices, 0, LockFlags.None);

// Point the device at your vertex buffer.

device.SetStreamSource(0, VertBuffer, 0);

// Assign the texture to the device.

device.SetTexture(0, BackgroundTexture);

// Ask the device to draw the contents of the buffer.

device.DrawPrimitives(PrimitiveType.TriangleList, 0, 2);

// Stop using this texture.

device.SetTexture(0, null);

The texture itself is loaded from a bitmap resource:

public Texture BackgroundTexture;

...

BackgroundTexture = TextureLoader.FromStream(device, textureStream);

The texture type is used to hold textures that you want to use in your program. The TextureLoader class provides
a static method that can read a texture from a range of sources. In the preceding example, the texture is loaded
from a stream. The sample project TextureBackground uses these features to provide a class called
ImageBackground that you can use in Direct3D programs to provide a textured background for a 3-D scene. The
scene can contain other kinds of 3-D objects rendered by different texture types.

A single texture image can be shared among a large number of items in a scene. Different parts of an object, or
even textures for different objects, can be stored in a single texture. This can simplify resource management and
also removes the need to change drawing textures as a number of items are drawn. By careful manipulation of
texel values, you can also use the same texture to draw both the "front" and the "back" of a 3-D object.

Important

For performance reasons, it is important that your textures be sized in powers of 2.
This has to do with the way that the texture locations are processed as they are
rendered. Speaking of performance, remember that drawing with textures is
processor intensive.

Creating More Complex Objects

A single triangle is not very interesting, even if you make it spin in three dimensions. However, you can create
more complex items by using more triangles. Increase the size of the vertex buffer and add more triangles to
describe the scene. Note that you express the fact that some triangles are on the "back" of the 3-D object by
specifying the vertices of the rear triangles with the appropriate draw order. To draw a six-sided cube, you need
12 triangles, for a total of 36 vertices:

int color = Color.Red.ToArgb();

/// Front face

Vert[0] = new CustomVertex.PositionColored(-0.5f, -0.5f, -0.5f, color);

Vert[1] = new CustomVertex.PositionColored(-0.5f, +0.5f, -0.5f, color);

Vert[2] = new CustomVertex.PositionColored(+0.5f, -0.5f, -0.5f, color);

Vert[3] = new CustomVertex.PositionColored(+0.5f, -0.5f, -0.5f, color);

Vert[4] = new CustomVertex.PositionColored(-0.5f, +0.5f, -0.5f, color);

Vert[5] = new CustomVertex.PositionColored(+0.5f, +0.5f, -0.5f, color);

The preceding code shows only how the front face is constructed. The other five faces are created in exactly the
same way. The cube will be one unit in size and centered on the origin (which by default is the very center of the
screen).

If you are creating complex objects, you should investigate the use of index buffers. As you can see from the
preceding code, a particular vertex is used more than once in the triangles. Vert[2] and Vert[3] both refer to the
same position, which is wasteful of memory. When you use an index buffer, you provide a list of vertices and
then express your shapes by referring to which particular vertex that you want to use at that position. So rather
than using many bytes to express a position, you can simply use a single value that gives the offset into the
buffer of the vertex you want to use. This is particularly efficient to use with the cube because there are only
eight different vertex positions used. Perhaps the best way to create objects, however, is to use meshes, which
we describe in the section titled "Meshes" later in this chapter.

Drawing Multiple Items

You may think that to draw multiple cubes in the 3-D environment requires multiple sets of vertices with position

values set to locate the vertices in different places. After all, at the start of this chapter you moved a triangle
around by changing the values on the vertices that defined its position. However, this is not actually how you do
it.

It might sound strange, but it is easier for you to move the world. By that, we mean that if you want to draw two
different-sized cubes in two different positions, you don't create two sets of vertex data but instead apply a
transformation to the world, draw the vertex data, apply another transformation, and draw the data again. The
key to this is the way that you can use matrices to combine transformations. You can use one matrix to hold the
size of a particular block, another matrix to hold the rotation of that block, and a third matrix to hold the 3-D
position of that block. If you multiply these three matrices together, you can create a single transformation that
tells Direct3D how to put your block where you want it. For example, suppose you want to draw two blocks, side
by side, one twice the size of the other, and both rotated by different amounts. You start by creating some
matrices:

Matrix scale1;

Matrix scale2;

Matrix rot1;

Matrix rot2;

Matrix pos1;

Matrix pos2;

These will hold the scale, rotation, and position of the two boxes. You can then create some values for these:

scale1 = Matrix.Scaling(2, 2, 2);

scale2 = Matrix.Scaling(0.5f, 0.5f, 0.5f);

rot1 = Matrix.RotationYawPitchRoll(0.5f, 0.5f, 0.5f);

rot2 = Matrix.RotationYawPitchRoll(-0.5f, -0.5f, -0.5f);

pos1 = Matrix.Translation(-0.6f, 0.6f, 0);

pos2 = Matrix.Translation(0.6f, -0.6f, 0);

The first block is to be drawn at two times normal size, and the second at half size. The first block is to be
rotated forward in each axis, and the second block is to be rotated backward. Finally, the first block will be
moved up and to the left, whereas the second will be moved down and to the right. The draw action simply
combines these matrices to come up with the final transformation for the draw operation:

// Set the data in the vertex buffer to your triangles.

VertBuffer.SetData(Vert, 0, LockFlags.None);

// block 1

device.Transform.World = scale1 * rot1 * pos1;

// Point the device at your vertex buffer.

device.SetStreamSource(0, VertBuffer, 0);

// Ask the device to draw the contents of the buffer.

device.DrawPrimitives(PrimitiveType.TriangleList, 0, 12);

// block 2

device.Transform.World = scale2 * rot2 * pos2;

// Ask the device to draw the contents of the buffer.

device.DrawPrimitives(PrimitiveType.TriangleList, 0, 12);

Figure 13-6 shows the display produced when the two blocks are drawn on the textured background created
earlier.

Figure 13-6. Drawing two blocks using transformations

Important

Because of the way that matrix multiplication is performed, it is very important that
the translation matrix (that is, the one that sets the position of the element in the
3-D world) is multiplied last. If not, the process will generate invalid coordinates. If
you want to combine translations, that is, add one position to another, you must do
this by adding the transformation matrices together, not by multiplying them.

Remember that you can also modify the camera position and viewing direction by creating appropriate
transformation matrices. This makes it easy to make the camera move around objects that are being drawn at
their respective positions.

Lighting

You have drawn all the scenes so far with lighting switched off. Direct3D has simply used the colors assigned to
the vertices and the bitmap on textures to decide what colors to draw. However, you can use lighting effects in
which you can select the type, color, and position of lights in your 3-D scenes.

Adding lighting can significantly increase the amount of work that the processor must do to render a scene. On
the PC platform, this is not a problem because the graphics subsystem usually has custom processors to perform
image rendering. However, this is not usually the case on a mobile device, so complex graphics that contain
large numbers of vertices and lighting can run rather slowly. The only good news in this respect is that the
limited number of pixels on a mobile device screen means that there is no point in adding large amounts of
detail and also that the processor does not have to generate big pictures.

Vertices and Normals

To actually add lighting to a scene, the Direct3D engine must have some more information about each vertex.
For each vertex in a scene, you must supply the normal to that vertex. The normal is a perpendicular vector that
points away from the face of which the vertex is part.

int color = Color.White.ToArgb();

/// Front face

Vertices[0] = new CustomVertex.PositionNormalColored(

 -0.5f, -0.5f, -0.5f, // position

 0.0f, 0.0f, -1.0f, // normal—looking out of the screen

 color);

Vertices[1] = new CustomVertex.PositionNormalColored(

 -0.5f, +0.5f, -0.5f, // position

 0.0f, 0.0f, -1.0f, // normal—looking out of the screen

 color);

Vertices[2] = new CustomVertex.PositionNormalColored(

 +0.5f, -0.5f, -0.5f, // position

 0.0f, 0.0f, -1.0f, // normal—looking out of the screen

 color);

The preceding code creates a triangle that is facing the viewer. It uses a new kind of CustomVertex called
PostionNormalColored. This gives the position and color of a vertex, as well as the direction that is perpendicular
to the surface of which the vertex is part. The triangle is part of the front face of your cube. Remember that the
value of Z (the third dimension) increases as you move "in" to the screen. The camera has been placed at 0.0f,
0.0f, –5.0f, that is, above the screen. This means that the direction perpendicular to a surface lying flat below
the camera is looking out of the screen, traveling along the –Z-axis. Note that the actual value of the normal
vector does not matter: It could be –1 or –100; the direction is all that Direct3D is interested in. To be able to
draw 3-D cubes, you must add this normal information for all the other vertices too.

Lights Setup

If you want to use lights in your scene, you have to change the way that the graphics device is configured. You
also must configure and position some lights:

PresentParameters presentParams = new PresentParameters();

presentParams.Windowed = true;

presentParams.SwapEffect = SwapEffect.Discard;

presentParams.EnableAutoDepthStencil = true;

presentParams.AutoDepthStencilFormat = DepthFormat.D16;

device = new Device(

 0, // device number 0

 DeviceType.Default, // default configuration

 this, // reference to the parent window

 CreateFlags.None, // no special creation flags

 presentParams); // the presentation parameters

device.RenderState.Lighting = true;

device.Lights[0].Diffuse = Color.Blue;

device.Lights[0].Type = LightType.Directional;

device.Lights[0].Direction = new Vector3(-.5f, -.5f, -.5f);

device.Lights[0].Update();

device.Lights[0].Enabled = true;

device.Lights[1].Diffuse = Color.Yellow;

device.Lights[1].Type = LightType.Directional;

device.Lights[1].Direction = new Vector3(.5f, .5f, -.5f);

device.Lights[1].Update();

device.Lights[1].Enabled = true;

device.RenderState.Ambient = Color.White;

The preceding code sets up a device to use lighting and configures a pair of directional light sources, one yellow
and the other blue. Directional light is cast over all parts of a scene from a particular direction and can be used to
simulate sunlight or distant light sources. You can also create point light sources. A point source is rather like a
candle flame or the filament of a light. It provides a single point from which light will shine on objects around it.
For a point source, you specify where it is in the scene and also how the light intensity is attenuated when
drawing objects farther away from the point source.

Figure 13-7 shows the two light sources used to illuminate two spinning cubes. Each face is made up of two
triangles, one of them colored white. The scene is lit using two lights, one blue and the other white. When the
program runs, you can see the effect of the lights on the colors. The background is a texture that is also drawn
using lighting. The sample TwoBlocksWithLights contains the code for this image on the companion Web site.
Note that it does run rather slowly; you can greatly speed it up by removing the background.

Figure 13-7. Drawing two blocks using colored lights

Meshes

You can use collections of vertices to specify the position of the points in your 3-D objects, but Direct3D provides
a much better way of doing this called a mesh. Figures or vehicles in computer games almost always are
expressed in the form of a mesh. You can use a large number of tools to create meshes. Meshes and the textures
that give them their finished appearance are imported as resources. For mobile devices, on the present
generation of hardware it is probably not advisable to use complex meshes like those found in computer games.
Also, importing meshes can be difficult using Direct3D mobile.

For more information about creating meshes and importing them into Direct3D mobile programs, consult the
ManagedDirect3DMobileMeshesTutorial in the Microsoft .NET Compact Framework samples provided by Microsoft.
A copy of these samples is supplied in the network resources for this book.

However, meshes are interesting in that some predefined meshes exist that you can use to create 3-D shapes
quickly for use in your programs. You can create a box, sphere, cylinder, torus (donut), or polygon with hardly
any work.

Mesh box = Mesh.Box(device, 1, 1, 1);

This code creates a box that is one unit in size in each direction. Box is a static method in the Mesh class, and it
accepts the Direct3D device and the dimensions (width, height, and depth) and creates a mesh that describes a
box that size. If you want to create a sphere, the code is similar:

Mesh sphere = Mesh.Sphere(device, 1, 18, 18);

The first parameter after the device is the radius; the last two are the number of slices and stacks in the sphere.
These specify how "lumpy" the sphere will be. You know that everything you draw is actually made up of
triangles. This means that you cannot draw curved surfaces; all you can do is make the triangles so small that
the resulting shape closely approximates a curved surface. The slices and stacks values control how many
triangles you have in the vertical and horizontal directions, respectively. The higher these values, the better the
resulting object will look—but of course it will occupy more memory and take longer to draw.

The predefined meshes are useful for creating simple shapes very easily, but unfortunately it is not possible to
add textures to meshes created in this way. Instead, the way they appear is controlled by the material selected
when they are drawn.

Lighting and Materials with Meshes

Now you can consider how meshes will appear when they are drawn. With Direct3D, you can create Materials that
specify the color and reflective behavior of surfaces on an object.

boxMaterial = new Material();

boxMaterial.Ambient = Color.Red;

This code creates a new material that has an ambient color of red and diffuse color of white. The following

subsections describe what these terms mean.

Ambient Light

When you light a scene, you can specify the color of the ambient light for that scene:

device.RenderState.Ambient = Color.Gray;

Ambient light does not come from anywhere specific; you can think of it as all around. In essence, it is the color
objects are when no light falls on them. The ambient light used to render a scene combines with the ambient
color of material to set the color of the unlit items.

For example, if you set the ambient light color to blue and the material ambient color to blue, any object that
uses that material is rendered blue. However, if you set the ambient color of the material to yellow, objects that
use that material are rendered black because yellow objects appear black in blue ambient light. If you set the
ambient material color to white, objects appear in the color you have set for the objects. This is directly
analogous to shining a white light on a colored item. Conversely, anything with a material ambient color set to
white is rendered in the color of the ambient light. This is directly analogous to shining a colored light on a white
item.

In the examples, we set the ambient light color to gray to make it appear that objects that have no light on them
are in shadow.

Diffuse Light

You can also set the diffuse color of a material as follows:

boxMaterial.Diffuse = Color.Red;

The diffuse color of a material is the color that is combined with the color produced by lights shining on the
material. For example, if you shine a white light on a material that has the Diffuse property set to Red, the points
on which the light shines will appear red. If you shine a green light on the same material, the illuminated points
will appear black because green objects appear black in red light.

Tip

You can use the diffuse and ambient settings to color objects in ways that are not
possible in real life and that may not look very good. For a realistic appearance, set
the diffuse color to Gray and set the diffuse and ambient colors for given objects to
the same values.

To draw a mesh using a particular material, you must select the material during the draw operation.

device.Material = boxMaterial;

box.DrawSubset(0);

You can use the same material for a number of items.

Figure 13-8 shows a sphere and a block being drawn. They are being drawn with red and blue material and the
ambient light color set to Gray. The sample program BlockAndSphereWithMaterial, which you can find on this
book's companion Web site, contains the code for this image.

For more information about the use of lights, including point lights, a good place to start is the
ManagedDirect3DMobileLightingSample provided by Microsoft in the .NET Compact Framework Samples.

Figure 13-8. Drawing a block and a sphere using materials

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Direct3D on Mobile Devices

Now you know the basics of drawing in three dimensions. Now consider the interaction between the Direct3D
system and a device running Windows Mobile.

Direct3D and Events

When a graphics program is running, a number of events, such as a change in the size of the display, an
application being minimized, or another application acquiring the graphics adapter, can happen to which the
program must respond. Direct3D provides events as a way of allowing a program to detect and respond to such
events. It turns out that on the mobile platform the number of significant events is actually quite small.

Device Reset

If a graphics device is reset, the program must restore the state of some Direct3D objects, including textures,
meshes, surfaces, vertexBuffers, indexBuffers, and lights. Your program can detect when this event occurs by
binding to the DeviceReset event when initializing your graphics device:

device.DeviceReset += new EventHandler(DeviceReset);

DeviceReset(device, EventArgs.Empty);

The first line in the preceding code binds to the reset event; the second line makes a call to the DeviceReset
method, which contains all the required setup code.

Managing Orientation Change

Many mobile devices can operate in landscape and portrait modes, and the user of the device can change
orientation as the device is running. When the orientation changes, your application should scale the view of the
scene accordingly. You have already seen how to handle the DeviceReset event. This event is also generated
when the orientation of the screen changes. Handling a change in orientation effectively means adjusting the
field of view so that the aspect ratio of the objects drawn is retained—so that circles remain circles and squares
remain squares. You can adjust the field of view by using the aspect ratio of the screen to calculate the field of
view as follows:

float aspectRatio =

 ((float)device.PresentationParameters.BackBufferWidth) /

 device.PresentationParameters.BackBufferHeight;

device.Transform.Projection = Matrix.PerspectiveFovLH(

 (float)Math.PI / 4, // field of view

 aspectRatio, // aspect ratio

 1.0f, // near Z plane

 100.0f // far Z plane

);

The back buffer properties give you the width and height of the display area available. The computed aspect ratio
is then used to modify the camera projection. If this is performed during a device reset, the graphics will be
drawn correctly. Of course, your program must make sure that all the required objects are still visible because
important objects may be unintentionally cropped when the dimensions of the screen change. You can address
this by moving the camera farther out from the scene or by adjusting the field of view.

Important

Not all implementations of Direct3D on mobile devices are able to manage the
orientation changes without some screen corruption. If this feature is important to
your application, you should test it on a real device prior to deployment. If your
application works only in one orientation, you should test for the correct aspect ratio
and display an error if an incorrect orientation is requested.

Direct3D Drawing Performance

The graphics performance on mobile devices is not as good as it is on desktop computers. Therefore, it is
important that you monitor the performance of your application very carefully. Graphical performance is
expressed in terms of the number of frames per second (fps) that a program can display. On high-performance
desktop computers, this value can be more than 100 fps. However, on a mobile device, the limitations of the
display hardware mean that frame rates of more than 20 fps will not be drawn correctly.

One way to monitor performance is to add an fps counter to your program. The counter displays the number of
frames per second that your application is generating. A number of counters are available. The sample program
called ManagedDirect3DMobileLightingSample on the companion Web site contains one such example.

You can always improve fps speed by removing textures, reducing the lighting effects, and turning off triangle
culling, if appropriate. Remember to size all textures in powers of 2, and if you are converting an existing
application from computer to mobile device, resize all the textures to save on resources. The development
philosophy is to start simple and add complexity, carefully monitoring performance on the lowest specified device
that you want to target.

Handling Platform Diversity

If you are writing a program that contains moving graphics, perhaps a game, you will want the program to run at
the same speed on all platforms. One way to achieve this is to use a timer to trigger the redraw action. If the
timer fires at a rate of 20 events per second, say, your game will update at this speed.

You can modify the frame rate without affecting the speed at which the game plays by measuring the time
between display updates and then moving the items in the 3-D environment by a proportionate amount.
Unfortunately, Windows Mobile 5.0 does not provide a high-resolution timer for use in these calculations, but the
Environment.TickCount property, which gives the number of milliseconds that have elapsed since the system was
started, can be used for this.

Battery Life

Programs that produce 3-D graphics displays make heavy demands on the underlying processor. If the hardware
supports 3-D graphical acceleration, this hardware is also used when 3-D displays are produced. This means that
battery consumption increases accordingly. You should remember that running at maximum update rate may
produce the best possible display but may also result in very poor battery life. It might therefore be a good idea
to cap the frame rate, perhaps by pausing execution after a frame has been drawn, on very high performance
systems.

If you want to take your Direct3D graphics skills further, you can investigate the range of examples and tutorials
on the Microsoft MSDN Mobile Direct3D Programming Web site at msdn2.microsoft.com/en-us/library
/aa452478.aspx. Although not all the techniques described are available on mobile devices, you may also find a
Microsoft DirectX 9 reference useful.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

This chapter discusses how 3-D graphics can be implemented on a Windows Mobile 5.0–powered device using
Direct3D. We walk you through creating a display device and using this to draw simple two-dimensional shapes
with textures on them. Then we move into three dimensions and discuss rendering shapes in three dimensions.
We also discuss matrices and how these can be used to specify the position, orientation, and size of items drawn
in three dimensions. Finally, you perform some animation and lighting and look at issues that affect the use of
3-D graphics on the mobile platform.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 14. Interoperating with the Platform

In this chapter:

Understanding Platform Invocation Services 495

Understanding COM Interop 516

Throughout this book, we have made references to using functionality outside the Base Class Library (BCL)
available in the Microsoft .NET Compact Framework. You can create your own business logic purely in managed
code, but rarely will you write an entire application that does not need to go beyond this and call into some
native code. Although version 2.0 of the Compact Framework has a much richer class library than version 1.0
does, there are still cases when you'll need to use other functionality, including device-specific application
programming interfaces (APIs). This may take the form of system APIs that are part of Microsoft Windows CE, or
a third-party software development kit (SDK), or perhaps your own legacy native code. This chapter investigates
in detail the techniques available to cross the managed to native code boundary. First, we look at the simplest
scenario of calling static native functions and then look at the way the runtime marshals .NET types and
structures. We also investigate more advanced techniques that allow native code to call back into your managed
code. We put this all together by using a worked class example that is a .NET Compact Framework 2.0
implementation of a subset of the System.Media namespace, which will be part of the .NET Compact Framework
version 3.5. In the second half of this chapter, we look at Component Object Model (COM) interoperability,
including using COM objects from your managed code and exposing your managed code as a native COM
interface. Platform interop is a vital part of application development—you can find a need to step outside the
Compact Framework class library on almost any application project.

Understanding Platform Invocation Services

The .NET Framework includes a set of functionality known as Platform Invocation Services, or PInvoke for short.
With PInvoke, you can call native methods, written in C or C++, from managed code, which is necessary to make
use of any functionality outside the .NET class libraries. Internally, the base class libraries use Platform Invoke to
interoperate with the host operating system. Although the .NET Compact Framework provides a rich
programming model, oftentimes you must go beyond this and use additional functionality such as from your
existing legacy native code or functionality that is part of the Windows CE operating system. Luckily, the
Compact Framework has a powerful platform invocation subsystem that you can use to call into external code.
The functionality required is located in the System.Runtime.InteropServices namespace.

This first section of the chapter looks at calling static native methods, which are methods written in C and
compiled into machine code in a dynamic-link library (DLL). For example, you may have legacy code written in
this way that you would like to reuse in a managed code project. The examples in this chapter are based on
features already present in the underlying operating system that are not available directly through the Compact
Framework class libraries.

When you define a native method that you want to invoke, the syntax is similar to that of defining your own
method in managed code, with only a few key differences. You can find numerous examples of PInvoke
declarations online in an MSDN article at msdn2.microsoft.com/en-us/library/aa446550.aspx and at
www.pinvoke.net. The following code sample shows a simple API call that plays a sound based on a member of
the MB enumeration.

using System.Runtime.InteropServices;

[DllImport("coredll.dll")]
internal static extern void MessageBeep(MB type);

internal enum MB
{
 ICONHAND = 0x00000010,
 ICONQUESTION = 0x00000020,
 ICONEXCLAMATION = 0x00000030,
 ICONASTERISK = 0x00000040,
}

The extern keyword tells the runtime that the method body is defined elsewhere. Because of this, you do not
define a body for the method but instead follow the definition by a semicolon as the end of the statement. Above
the method declaration, you add an attribute of type System.Runtime.InteropServices.DllImportAttribute. This
tells the runtime in which library to look for the method and optionally what name or index the method is
exported to, if different from the method name as you have defined it. The properties of the DllImportAttribute
are shown in Table 14-1.

Table 14-1. DllImportAttribute Properties

Property Description

CallingConvention Currently unused in the Compact Framework because only
CallingConvention.WinApi is supported.

CharSet Can be set to either Auto or Unicode; however, on Windows CE,
Auto uses Unicode because Windows CE is an all-Unicode operating
system.

EntryPoint Defines the name (or ordinal number prefixed with a number sign,
for example, "#24") of the exported native method. With
EntryPoint, you can use a friendly name for your PInvoke method if
the native method is exposed by ordinal only or has a C++
mangled name.

PreserveSig Used with COM interop (which is discussed later in the chapter).

SetLastError Toggles whether to store the last error code following a call to the
method so that the error code can be retrieved by using
Marshal.GetLastWin32Error(). This is activated by default when
using Microsoft Visual Basic but is disabled by default with C#.

Methods can be exposed by a DLL either by name or by ordinal. If the library is written in C, the name of the
method is also the name of the export. In C++, the name is altered, known as "mangling," so that it retains
information about the method signature. This allows tools to determine the method signature by "unmangling"
the name. You can use a tool such as Depends.exe or Dumpbin.exe to list exported functions in a DLL. These run
on your development computer, although they can be used with device-specific DLLs. The sample project called
NativeDll, which you can find in the downloadable code samples for this chapter on the book's companion Web
site, contains an example of both types of method, and Figure 14-1 shows the exported methods as they appear
in Depends.exe.

Figure 14-1. Exported native methods as they appear in Depends.exe

[View full size image]

You can see that with the Depends.exe tool you can switch between mangled and unmangled names; for
example, the C++ export shows as ?MangledCppMethod@@YAHH@Z and int MangledCppMethod(int),
respectively. To call a method with a mangled name you add the EntryPoint property to the DllImportAttribute
applied to the managed method declaration and specify the exact mangled name, for example:

[DllImport("NativeDll.dll", EntryPoint="?MangledCppMethod@@YAHH@Z")]
private static extern int MangledCppMethod(int arg);

In the case of a method exported with no name, you can call it as long as you know the ordinal, which you can
determine from Depends.exe. In this case, the EntryPoint is the ordinal prefixed with the number sign, for

example:

[DllImport("NativeDll.dll", EntryPoint="#1")]
private static extern int MangledCppMethod(int arg);

Beyond defining the actual function name, you must understand how to declare the arguments a method will
accept and how these types are marshaled between native and managed code. Because the .NET type system is
different from the types available in C and C++, you must take care to define the types used correctly.
Understanding marshaling will allow us to investigate more complex PInvoke declarations.

Marshaling

A set of rules define how the various managed types in the base class library are marshaled to native code. They
are illustrated in Table 14-2. The default behavior can be overridden using the MarshalAs attribute, which is new
in version 2.0 of the Compact Framework and which removes a lot of manual conversion that was necessary to
PInvoke in version 1.0 of the .NET Compact Framework.

Table 14-2. .NET Types and Default Marshaling Behavior

.NET Type Size(Bytes) C++ Type

System.Boolean 2 short

System.Byte 1 uchar

System.SByte 1 char

System.Int16 2 short

System.UInt16 2 ushort

System.Int32 4 LONG

System.UInt32 4 DWORD, UINT, ULONG

System.Int64 8 LONGLONG

System.UInt64 8 ULONGLONG

System.IntPtr 4 HANDLE, HWND, PBYTE, etc.

System.UIntPtr 4 —

System.Single 4 Float

System.Double 8 —

System.Guid 16 GUID

System.String 4(Pointer) LPWSTR

System.Array — LPVOID for PInvoke methods, SAFEARRAY
for COM Interop

System.Enum Enumeration types are marshaled based
on their base type. Unless you specify
otherwise, all Enums are created with the
Int32 type.

As long as your native methods export only these types with their default behavior, you don't have to worry—the
.NET runtime will do the marshaling for you. If you must force a specific marshalling behavior, you can apply the
MarshalAsAttribute. For example, when calling the native method CloseHandle, which is used with various native
APIs, you must specify that the return value is actually a 4-byte native BOOL type.

[DllImport("coredll.dll", SetLastError = true)]
[return: MarshalAs(UnmanagedType.Bool)]
internal static extern bool CloseHandle(IntPtr hObject);

CloseHandle closes a native system handle that is attached to some resource, such as a named event, mutex, or
database table. The runtime then knows that the value returned is an unmanaged BOOL type and that it should
be converted to a managed System.Boolean(bool keyword in C#) automatically.

MarshalAsAttribute

With the MarshalAs attribute, you can override the default marshalling behavior of parameters or fields. It uses
the UnmanagedType enumeration, which contains various special behaviors that can be applied. Table 14-3

contains the most important of these.

Table 14-3. UnmanagedType Members

AsAny The default behavior; determines the appropriate marshalling at
run time based on the object type.

Bool Marshals a Boolean value as a 4-byte BOOL type. Zero is false, and
nonzero is true.

BStr, AnsiBStr Generally used with COM Interop, the BStr is a length-prefixed
string. You are unlikely to use the Ansi variety because Windows CE
is Unicode only and all APIs should be designed similarly.

ByValArray Marshals a managed array as a single block with each item directly
following the last in memory. You must specify SizeConst
parameter for the size of the array.

ByValTStr Used for marshalling a string as an inline character array rather
than as a string pointer. Again, you must specify the SizeConst
parameter because this affects the size of the overall structure.

FunctionPtr Used with delegates; passes the delegate to native code as a
function pointer that native code can call back into.

IDispatch, Interface,
IUnknown

Marshals an object as a COM interface. Interface uses the interface
type from the object type IDispatch, and IUnknown uses the
generic COM interface types.

LPArray Marshals an array as a pointer to the first item in the array. The
array contents are arranged flat in memory, and you must specify
the SizeConst if used for marshalling from native to managed code.

LPStr, LPTStr, LPWStr Marshals a string as a pointer to the character array. Because only
Unicode is supported on the Windows CE platform, LPTStr behaves
the same as LPWStr. LPStr is unlikely to be required; marshals as
American National Standards Institute (ANSI) chars.

LPStruct Used only with the Guid type to pass it with an extra layer of
indirection.

VariantBool Used to pass a Boolean value as a 2-byte COM type; 0 is false, –1 is
true.

Native Structures

When you consider defining a native structure in managed code, you have the choice of creating it as a class or
as a struct. Fundamentally, the difference is that a struct is marshaled by value on the stack and a class is
placed in the heap and is marshaled by reference. Often, you will come across native methods that receive a
pointer to a structure; these are to be marshaled by reference, so either of the following is valid:

internal class SomeInteropClass
{
}
private static extern int SomeInteropMethod(SomeInteropClass data);

internal struct SomeInteropStruct
{
}
private static extern int SomeInteropMethod(ref SomeInteropStruct data);

Where your choice becomes important is when a structure has another structure as a member. In native code,
the internal structure is placed inline and therefore must be defined as a struct for the marshaler to treat it the
same way as the native version. For example, the following code sample shows the SYSTEMTIME type defined as
a struct and appearing inline in a TIME_ZONE_INFORMATION structure. We have also applied the
StructLayoutAttribute to tell the runtime to lay out the structure sequentially in the order we have defined it; this
avoids the runtime optimizing the layout automatically. This is important because the structure must match the
native definition exactly.

[StructLayout(LayoutKind.Sequential)]
internal struct TIME_ZONE_INFORMATION
{
 int Bias;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=32)]
 string StandardName;

 SYSTEMTIME StandardDate;
 int StandardBias;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=32)]
 string DaylightName;
 SYSTEMTIME DaylightDate;
 int DaylightBias;
}

[StructLayout(LayoutKind.Sequential)]
internal struct SYSTEMTIME
{
 ushort wYear;
 ushort wMonth;
 ushort wDayOfWeek;
 ushort wDay;
 ushort wHour;
 ushort wMinute;
 ushort wSecond;
 ushort wMilliseconds;
}

Many native structures include a member (usually at the beginning) that specifies the length of the structure.
This member is used for versioning because newer versions may be extended and hence have a greater size. The
runtime can return the size of any structure using the Marshal.SizeOf method. It is important that your structure
be defined exactly because if you call an API method with an invalid size specified, it will most likely fail. If you
define the structure too small, the native method will write data into unallocated memory beyond your structure
that will result in a native exception; if the structure is too big, the data will not match up with the correct fields
in the structure. See "The Log Files" in Chapter 4 for details of the interop log that can help to diagnose
marshaling problems.

NativeMethods

It is not good practice to mix PInvoke declarations in your managed classes. Instead, the .NET Framework
Design Guidelines suggest that PInvoke declarations should be placed in a static internal class called
NativeMethods. You should also never expose raw PInvoke methods publicly for other assemblies to call directly.
In almost all cases, you must validate arguments before calling the native method. If you run the Run Code
Analysis feature in Microsoft Visual Studio, Platform Invoke declarations that are not in a NativeMethods class are
flagged as a warning. On the desktop, there are stricter security checks around calls to unmanaged functions as
a result of the Code Access Security (CAS) implemented in the full .NET Framework. On the Compact Framework,
CAS is not supported, so calling native methods is much simpler. It's usually good practice to put any structures
used only internally when dealing with these PInvokes in the NativeMethods class too.

Media Example

To illustrate a number of the techniques described so far, we work through the definition of a reusable class that
demonstrates wrapping native API functionality in a managed class. In this case, we take an often-requested
piece of functionality, that of sound playback, and create a wrapper class. We modeled the class on the
SoundPlayer component, which can be found in the desktop .NET Framework but is absent from version 2.0 of
the Compact Framework. This class will be available in the .NET Compact Framework version 3.5. The full code
sample appears as Listing 14-1. You can see that we have placed all PInvoke-related code in a NativeMethods
class. The result is very simple but provides a class that matches the behavior of the desktop equivalent, which
should make it very easy to port any code consuming it to .NET Compact Framework 3.5 later on because only
the namespace needs to be changed from Chapter14.Media to System.Media.

Listing 14-1. Sample Media Classes

using System.Runtime.InteropServices;

namespace Chapter14.Media
{
 public sealed class SoundPlayer : Component
 {
 //path to the file
 private string soundLocation = "";

 public SoundPlayer() { }

 public SoundPlayer(string soundLocation)
 {
 //Set the path.
 this.soundLocation = soundLocation;
 }

 public string SoundLocation
 {
 get
 {
 return soundLocation;
 }
 set
 {
 if (File.Exists(value))
 {
 soundLocation = value;
 }
 OnSoundLocationChanged(EventArgs.Empty);
 }
 }

 public event EventHandler SoundLocationChanged;

 private void OnSoundLocationChanged(EventArgs e)
 {
 if (this.SoundLocationChanged != null)
 {
 this.SoundLocationChanged(this, e);
 }
 }

 public void Play()
 {
 //Play async.
 NativeMethods.PlaySound(soundLocation, IntPtr.Zero,
 NativeMethods.SND.FILENAME | NativeMethods.SND.ASYNC);
 }

 public void PlaySync()
 {
 //Play sync.
 NativeMethods.PlaySound(soundLocation, IntPtr.Zero,
 NativeMethods.SND.FILENAME | NativeMethods.SND.SYNC);
 }

 public void PlayLooping()
 {
 //Play looping.
 NativeMethods.PlaySound(soundLocation, IntPtr.Zero,
 NativeMethods.SND.FILENAME | NativeMethods.SND.ASYNC |
 NativeMethods.SND.LOOP);
 }

 public void Stop()
 {
 NativeMethods.PlaySound(null, IntPtr.Zero,
 NativeMethods.SND.NODEFAULT);
 }
 }
 public static class SystemSounds
 {
 public static SystemSound Beep
 {
 get
 {
 return new SystemSound(0);
 }
 }

 public static SystemSound Asterisk
 {
 get
 {
 return new SystemSound(NativeMethods.MB.ICONASTERISK);
 }
 }

 public static SystemSound Exclamation
 {
 get
 {

 return new SystemSound(NativeMethods.MB.ICONEXCLAMATION);
 }
 }

 public static SystemSound Question
 {
 get
 {
 return new SystemSound(NativeMethods.MB.ICONQUESTION);
 }
 }

 public static SystemSound Hand
 {
 get
 {
 return new SystemSound(NativeMethods.MB.ICONHAND);
 }
 }
 }

 public sealed class SystemSound
 {
 //type of sound
 private NativeMethods.MB soundType;

 internal SystemSound(NativeMethods.MB soundType)
 {
 //Set type.
 this.soundType = soundType;
 }
 public void Play()
 {
 //play
 NativeMethods.MessageBeep(soundType);
 }
 }

 internal static class NativeMethods
 {
 [DllImport("coredll")]
 internal static extern void MessageBeep(MB type);

 internal enum MB
 {
 ICONHAND = 0x00000010,
 ICONQUESTION = 0x00000020,
 ICONEXCLAMATION = 0x00000030,
 ICONASTERISK = 0x00000040,
 }

 [DllImport("coredll", EntryPoint = "PlaySoundW")]
 [return:MarshalAs(UnmanagedType.Bool)]
 internal static extern bool PlaySound(string lpszName,
 IntPtr hModule, SND dwFlags);

 [Flags()]
 internal enum SND
 {
 //ALIAS = 0x00010000,
 FILENAME = 0x00020000,
 //RESOURCE = 0x00040004,
 SYNC = 0x00000000,
 ASYNC = 0x00000001,
 NODEFAULT = 0x00000002,
 //MEMORY = 0x00000004,
 LOOP = 0x00000008,
 NOSTOP = 0x00000010,
 NOWAIT = 0x00002000
 }
 }
}

Callbacks into Managed Code

In some situations, you may want to communicate in the opposite direction. For example, you may start a
long-running process in a native library and need to communicate back to your managed application when it has
completed. You may also have a native component that must notify your managed application of some event at
any time. There isn't the equivalent of Platform Invoke for native code to simply call methods in your managed
code. Instead, you require some form of callback mechanism.

There are three ways in which native code can call back to managed code to inform of an event or pass some
data. The first is to use Windows messages, which are an integral part of any Windows application. The .NET
Compact Framework supplies a MessageWindow class that you can use to process incoming Windows messages.
The second technique is to use a system event handle and the WaitForSingleObject API method on a background
thread. This method will block until the handle is signaled. The downside of using this approach is that you must
use it in conjunction with another technique to pass any data. The third method, which is new to version 2.0 of
the Compact Framework, is the ability to pass a managed delegate to a native API function. The delegate is
marshaled as a function pointer and allows the native application to call directly into a managed method. As long
as you are careful that the types used in the method signature are suitably matched on both the native and
managed sides, this method is quite flexible.

MessageWindow

MessageWindow is a special type specific to the .NET Compact Framework, and to use it you must add a
reference to the Microsoft.WindowsCE.Forms assembly. MessageWindow was introduced to allow a managed
application to process incoming Windows messages because usually these would be handled by overriding the
form's WndProc method. For performance reasons, the Compact Framework does not expose the WndProc as the
full framework does.

Windows messages are inherent to the architecture of the user interface services in the Windows operating
system. The operating system manages sending Windows messages backward and forward between all the
windows on the system, and each window will interpret these in order to provide their specific function. Natively,
every control is a window, not just a form. The windows form a hierarchy in which the desktop, which contains
each top-level window, is at the top followed by contained controls. MessageWindow is exposed to native code as
a hidden window that is a child of your main application form. It exposes the window handle that you can pass to
native code and contains an overridable WndProc method. In this method, you can check the received message
and act on it accordingly.

All Windows messages are processed in the user interface thread, which means that you should not perform
long-running operations from in your WndProc implementation because it stops the user interface from updating.
In managed code, an individual message is described by the Message structure in the
Microsoft.WindowsCE.Forms namespace. Along with the handle of the destination window, this structure contains
two members, LParam and WParam. Each member is an IntPtr type that can contain supporting data. A special
message, WM_COPYDATA, is used to copy a block of memory from one process to another. With this message,
the LParam is a pointer to a COPYDATASTRUCT structure, and this and the raw data it points to are copied to the
context of the receiving application. This makes it a very easy to implement method of interprocess
communication.

To illustrate the MessageWindow approach, we extend the ConnectionManager sample introduced in Chapter 9,
"Getting Connected." We created a basic wrapper around the Connection Manager APIs but did not pass an
optional window handle that would receive events upon changes in the connection state. If a window handle and
a message ID are specified in the CONNMGR_CONNECTIONINFO structure, the message will be delivered to the
window identified by the handle. In this case, the WParam is used to pass the new connection status, but you
must cast it to the correct type so that it is interpreted as a member of the ConnectionStatus enumeration. To
support raising a managed event, you must define a delegate to define the method that will handle the event,
and you must define an internal method to raise the event that can be called from the separate message Window
class. The ConnectionStatusChangedEventArgs class gives you the ability to return the ConnectionStatus to the
event handler.

public delegate void ConnectionStatusChangedEventHandler(
 ConnectionStatusChangedEventArgs e);

public class ConnectionStatusChangedEventArgs : EventArgs
{
 private ConnectionStatus connectionStatus;

 public ConnectionStatusChangedEventArgs(ConnectionStatus status)
 {
 this.connectionStatus = status;
 }

 public ConnectionStatus ConnectionStatus
 {
 get
 {
 return connectionStatus;
 }
 }
}

In the ConnectionManager class, we added the ConnectionStatusChangedEvent and an internal method used to
raise the event.

//raises the connectionstatuschanged event
internal void OnConnectionStatusChanged(ConnectionStatusChangedEventArgs e)
{
 if (ConnectionStatusChanged != null)
 {
 ConnectionStatusChanged(e);
 }
}

//event fired when Connection Manager sends a status changed message
public event ConnectionStatusChangedEventHandler ConnectionStatusChanged;

A message ID is simply an integer; however, many are reserved for generic events and settings or those of the
various built-in native Window types. To pass a unique message ID to Connection Manager, call the native
RegisterWindowMessage API method, which takes a string and returns a message ID that is safe to use. The
PInvoke definition is added to the NativeMethods class, as you'll see in the following code.

[DllImport("coredll", SetLastError = true)]
internal static extern int RegisterWindowMessage(string lpString);

If different processes call RegisterWindowMessage using the same string, the same message ID is returned. This
makes RegisterWindowMessage a useful tool for when you use the MessageWindow for interprocess
communication.

To use the MessageWindow, you must create a new class that inherits from MessageWindow—you cannot simply
instantiate a MessageWindow object directly because you must override the window procedure (WndProc) to add
your own behavior. In this example, the custom class is called ConnectionManagerMessageWindow. To register
just a single message ID for the lifetime of the application, you call RegisterWindowMessage statically from the
ConnectionManagerMessageWindow class. This class is internal and contains a simple constructor that takes a
reference to the parent ConnectionManager object. After performing your own custom actions in the WndProc
method, you should call the base WndProc implementation in MessageWindow to ensure the system processes
standard window messages correctly.

internal class ConnectionManagerMessageWindow : MessageWindow
{
 internal static int WM_ConnectionManager =
 NativeMethods.RegisterWindowMessage("ConnectionManagerEvent");
 private ConnectionManager connectionManager;

 internal ConnectionManagerMessageWindow(ConnectionManager parent)
 {
 this.connectionManager = parent;
 }

 protected override void WndProc(ref Message m)
 {
 if (m.Msg == WM_ConnectionManager)
 {
 //This is a Connection Manager message.

 //convert the status
 ConnectionStatus status =
 (ConnectionStatus)m.WParam.ToInt32();
 //Raise the event on the parent ConnectionManager class.
 this.connectionManager.OnConnectionStatusChanged(
 new ConnectionStatusEventArgs(status));
 }

 //Pass control to base WndProc implementation.
 base.WndProc(ref m);
 }
}

The constructor for the ConnectionManager class has been modified to create a new instance of
ConnectionManagerMessageWindow. It writes the window handle of the message window, the HWnd property, to
the CONNMGR_CONNECTIONINFO structure.

public class ConnectionManager
{

 private IntPtr handle;
 private NativeMethods.CONNMGR_CONNECTIONINFO connectionInfo;
 private ConnectionManagerMessageWindow messageWindow;

 public ConnectionManager()
 {
 messageWindow = new ConnectionManagerMessageWindow(this);

 connectionInfo = new NativeMethods.CONNMGR_CONNECTIONINFO();
 connectionInfo.cbSize = Marshal.SizeOf(connectionInfo);
 connectionInfo.dwFlags = NativeMethods.CONNMGR_FLAG.NO_ERROR_MSGS;
 connectionInfo.dwParams = NativeMethods.CONNMGR_PARAM.GUIDDESTNET;
 connectionInfo.dwPriority =
 ConnectionPriority.HighPriorityBackground;

 // Window handle
 connectionInfo.hWnd = messageWindow.Hwnd;
 // Unique message ID
 connectionInfo.uMsg =
 ConnectionManagerMessageWindow.WM_ConnectionManager;
 }

After the EstablishConnection method is called, the Connection Manager will begin sending messages to the
message window with the connection status. Even after the connection is established, the Connection Manager
will send messages if the connection is canceled by the user or otherwise broken.

Named Events

The Windows operating system supports a synchronization entity know as an event handle, which is effectively a
unique numerical handle you can perform operations on by using system API methods. This is completely
different from the .NET event system that you are probably already familiar with. Windows allows applications to
register event handles using a unique name, and you can write code to then wait until the handle is signaled.
When different applications attempt to create an event handle using the same name, the same handle is
returned. This makes named events a very useful interprocess communication method.

Although the Compact Framework has some underlying support for system events in the System.Threading
namespace, it doesn't have the EventWaitHandle included in the full .NET Framework, which supports creating or
opening existing named events. EventWaitHandle inherits from the abstract WaitHandle class, which defines
methods such as WaitOne that must be implemented. This is used to halt execution in the current thread until
the handle is signaled. Once again, you must resort to some Platform Invoke to take advantage of this
functionality.

The following code sample re-creates the desktop EventWaitHandle class and should prove to be a handy piece of
reusable code. As well as the functionality to work with a single handle, the following code also includes a static
WaitAny method that accepts an array of handles and waits until any single handle is signaled. First, you must
create an internal NativeMethods class to hold the API method declarations.

internal static class NativeMethods
{
 internal enum EVENT
 {
 PULSE = 1,
 RESET = 2,
 SET = 3,
 }

 [DllImport("coredll", SetLastError = true)]
 [return:MarshalAs(UnmanagedType.Bool)]
 internal static extern bool EventModify(IntPtr hEvent, EVENT ef);

 [DllImport("coredll", SetLastError = true)]
 internal static extern IntPtr CreateEvent(IntPtr lpEventAttributes,
 bool bManualReset, bool bInitialState, string lpName);

 [DllImport("coredll", SetLastError=true)]
 [return:MarshalAs(UnmanagedType.Bool)]
 internal static extern bool CloseHandle(IntPtr hObject);

 [DllImport("coredll", SetLastError = true)]
 internal static extern int WaitForSingleObject(IntPtr hHandle,
 int dwMilliseconds);

 [DllImport("coredll", SetLastError = true)]
 internal static extern int WaitForMultipleObjects(int nCount,
 IntPtr[] lpHandles, bool fWaitAll, int dwMilliseconds);

}

CreateEvent is used to create a new event handle or open an existing handle. Although the name is optional,
calling the method with the same name is the only way to create a shared handle across different processes. You
can set the event from one process by using EventModify and wait for the signal in another process by using
WaitForSingleObject. To wait on a handle, you call WaitForSingleObject on a worker thread, which will block until
the handle is signaled or until a specified timeout elapses. The EventWaitHandle class inherits from the abstract
WaitHandle class and provides a constructor to create a handle and implementations for the WaitOne and Close
methods. The Set method is added to wrap EventModify to signal the event.

public class EventWaitHandle : WaitHandle
{
 public const int WaitTimeout = 0x102;

 public EventWaitHandle(bool initialState, EventResetMode mode,
 string name)
 {
 this.Handle = NativeMethods.CreateEvent(IntPtr.Zero,
 mode == EventResetMode.ManualReset, initialState, name);
 }

 public bool Set()
 {
 return NativeMethods.EventModify(this.Handle,
 NativeMethods.EVENT.SET);
 }

 public bool Reset()
 {
 return NativeMethods.EventModify(this.Handle,
 NativeMethods.EVENT.RESET);
 }

 public static int WaitAny(WaitHandle[] waitHandles)
 {
 return WaitAny(waitHandles, Timeout.Infinite, false);
 }

 public static int WaitAny(WaitHandle[] waitHandles,
 int millisecondsTimeout, bool exitContext)
 {
 IntPtr[] handles = new IntPtr[waitHandles.Length];
 for (int i = 0; i < handles.Length; i++)
 {
 handles[i] = waitHandles[i].Handle;
 }

 return NativeMethods.WaitForMultipleObjects(handles.Length,
 handles, false, millisecondsTimeout);
 }

 public override bool WaitOne()
 {
 return WaitOne(Timeout.Infinite, false);
 }

 public override bool WaitOne(int millisecondsTimeout, bool exitContext)
 {
 return NativeMethods.WaitForSingleObject(this.Handle,
 millisecondsTimeout) == 0;
 }

 public override void Close()
 {
 if (this.Handle != WaitHandle.InvalidHandle)
 {
 NativeMethods.CloseHandle(this.Handle);
 this.Handle = WaitHandle.InvalidHandle;
 }
 }
}

public enum EventResetMode
{

 AutoReset = 0,
 ManualReset = 1,
}

This class now has the ability to create an event handle and wait for it to be signaled or to signal it if you want to
alert another process or thread. To demonstrate this in action, we created a sample project using this class. We
use a Windows CE API that tells the system to signal a named event when a system change occurs. These are
defined in the notify.h header in the SDK, and the supported events are described as the
NOTIFICATION_EVENT_* constants that we defined in the NotificationEvent enumeration.

public enum NotificationEvent
{
 None = 0,
 TimeChange = 1,
 SyncEnd = 2,
 OnACPower = 3,
 OffACPower = 4,
 NetConnect = 5,
 NetDisconnect = 6,
 DeviceChange = 7,
 IrDiscovered = 8,
 RS232Detected = 9,
 RestoreEnd = 10,
 Wakeup = 11,
 TZChange = 12,
 MachineNameChange = 13,
}

The API call to set up this registration is CeRunAppAtEvent. As the name may suggest, this function is used for
launching an application on these events, but it can also be used to signal a named event by using a specific
format for the application name. To differentiate the event name from an executable file, the name of the event
must be prefixed with the following:

"\\\\.\\Notifications\\NamedEvents\\"

To unregister this named event you must call the same function using the None event type. In the sample, we
created a Notify class to wrap this and expose the RegisterNamedEvent and UnregisterNamedEvent methods.

internal static class NativeMethods
{
 internal const string EventPrefix =
 "\\\\.\\Notifications\\NamedEvents\\";

 [DllImport("coredll")]
 internal static extern bool CeRunAppAtEvent(string pwszAppName,
 NotificationEvent lWhichEvent);
}

public static class Notify
{
 public static void RegisterNamedEvent(NotificationEvent whichEvent,
 string eventName)
 {
 NativeMethods.CeRunAppAtEvent(NativeMethods.EventPrefix +
 eventName, whichEvent);
 }

 public static void UnregisterNamedEvent(string eventName)
 {
 NativeMethods.CeRunAppAtEvent(NativeMethods.EventPrefix +
 eventName, NotificationEvent.None);
 }
}

In the sample, we create two named events and register them to be signaled on the NetConnect and
NetDisconnect methods, respectively. In the application, we run a background thread that uses the static
EventWaitHandle.WaitAny method to wait on both handles. When one is signaled, the thread unblocks and
invokes a method in the user interface (UI) thread. This will change the color of the form based on the
connection state.

Note

Although this example illustrates the technique of using named events, if you are
developing with Windows Mobile 5.0 or later, you can use the managed
Microsoft.WindowsMobile.Status functionality to make your application react to
changes in network state.

To avoid the background thread blocking inevitably, you can create an additional EventWaitHandle that you can
signal from the UI thread. Therefore, if the user closes the application, the background thread will be safely
ended.

private void EventThread()
{
 //event to kill the worker thread
 hQuit = new Chapter14.Threading.EventWaitHandle(false,
 EventResetMode.AutoReset, null);
 //Set up the named events.
 EventWaitHandle hConnected = new EventWaitHandle(false,
 EventResetMode.AutoReset, "PowerConnected");
 EventWaitHandle hDisconnected = new EventWaitHandle(false,
 EventResetMode.AutoReset, "PowerDisconnected");

 while (true)
 {
 int eventIndex = EventWaitHandle.WaitAny(new WaitHandle[] {
 hQuit, hConnected, hDisconnected });

 switch (eventIndex)
 {
 case 0:
 hConnected.Close();
 hDisconnected.Close();
 hQuit.Close();
 return;
 case 1:
 //You are on a background thread, so invoke.
 Invoke(new EventHandler(Connected));
 break;
 case 2:
 Invoke(new EventHandler(Disconnected));
 break;
 }
 }
}

Function Pointers

A form of native to managed interop that was introduced in version 2.0 of the .NET Compact Framework is the
ability to marshal managed delegates as function pointers. A delegate is a definition for a method that handles a
particular managed event. In native code, it's possible to define a method that takes a pointer to a native
function and uses this to call back to provide status or multiple callbacks. It is used in the Windows CE APIs to
support enumeration of system resources such as windows, fonts, locales, and so forth. The following example
uses this technique to retrieve all of the top-level windows on the device and display them in the managed
application.

First, we look at the definition of the native API and the associated callback function in the SDK documentation.
The lParam argument is provided so that you can pass your own identifier, which will be sent back when your
callback is called. This might be useful if there is a case when your callback may be called from more than one
original call of the EnumWindows API.

BOOL EnumWindows(
 WNDENUMPROC lpEnumFunc,
 LPARAM lParam
);

BOOL CALLBACK EnumWindowsProc(
 HWND hwnd,
 LPARAM lParam
);

This method is fairly simple and is therefore easy to define in managed code. The default behavior for a delegate
passed to a native method is for it to be marshaled as a function pointer. As in previous examples, we place the
platform invoke declarations in a NativeMethods class.

private static class NativeMethods
{
 [DllImport("coredll")]
 [return: MarshalAs(UnmanagedType.Bool)]
 internal static extern bool EnumWindows(EnumWindowsDelegate lpEnumFunc,
 int lParam);

 [DllImport("coredll")]
 internal static extern int GetWindowText(IntPtr hWnd,
 System.Text.StringBuilder lpString, int nMaxCount);
}

One thing we discovered while building the sample application is that the delegate used in this process must
return an Int32 type. Boolean is not supported even if accompanied by the MarshalAsAttribute. Therefore, we
declare the delegate and the handling method as follows.

private delegate int EnumWindowsDelegate(IntPtr hwnd, int lParam);

// This method will be called by the native EnumWindows API.
private int EnumWindowsProc(IntPtr hwnd, int lParam)
{
 // Add to list on UI thread.
 NativeMethods.GetWindowText(hwnd, sb, sb.Capacity);
 this.Invoke(new AddToListDelegate(AddToList),
 new object[] { hwnd, sb.ToString() });

 //BOOL true
 return -1;
}

In the handling method, we call another Windows CE API, GetWindowText, to retrieve the text for the specific
window handle. Then we pass the handle and the text to another method called AddToList, which is invoked on
the UI thread as it updates the list box. This is necessary because the delegate will be called back by the system
on a different thread from which we cannot directly update UI elements. (See Chapter 11, "Threading," for more
information about updating the UI thread.) The delegate is se tup and the native API is called from a button
press in the sample application:

private void button1_Click(object sender, EventArgs e)
{
 listBox1.Items.Clear();
 NativeMethods.EnumWindows(new EnumWindowsDelegate(EnumWindowsProc), 0);
}

The system will keep calling the function until all the windows have been enumerated or the function returns
false. In this case, we always return –1, which is the integer equivalent of the BOOL true value. Because this
returns all top-level window handles and not just the visible ones, it returns a lot more results than the usual
Settings, Memory, Running Programs list does. It gives an interesting insight into what else is running on the
system, so you can interrogate the handles even more in your implementation to look at the flags or locations of
the specific windows. This example uses a feature straight out of the platform SDK, but you may encounter a
similar approach in third-party SDKs or in your own native libraries.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Understanding COM Interop

Component Object Model (COM) is a native object-oriented programming model that has been supported on
Windows CE since the earliest versions. COM components are exposed by interfaces and are reference counted so
that when the last reference is deleted, the object can safely release any resources it uses. COM components are
referenced by a pointer. In memory, this points to a VTable that is a list of function pointers to each method in
the interface. All COM interfaces are derived from IUknown, which includes methods for increasing (AddRef) and
decreasing (Release) the reference count and querying for another interface type (QueryInterface). A component
can support multiple interfaces, and each interface is identified by a unique Guid. The IDispatch interface is
derived from IUnknown and adds support for late binding. COM components supporting automation use
interfaces derived from the IDispatch interface.

Although the .NET Framework included COM interop support from its creation, the Compact Framework gained a
subset of COM interop support in version 2.0. With COM interop support, you can call COM components from your
managed code after providing a type library or manually defining the supported COM interfaces in your code. The
Compact Framework does not allow you to register your managed components as COM types such that they can
be activated from native code by using their class identifier (CLSID). This means, for example, that you can't
write shell extensions or ActiveX controls in managed code.

One feature that is supported in .NET Compact Framework is the ability to expose your class to a COM interface
such that it can call back in to your code. This is used as a notification mechanism by several system APIs. The
following code sample creates a wrapper around the messaging system and supports a callback that will be
executed when a new e-mail message is received on the device. The Windows CE Messaging API (CEMAPI) is a
complex set of COM interfaces, and we leave it as an exercise for you to extend the sample as required.

Like PInvoke, COM Interop incurs a performance hit. This is because when you create your COM component, the
runtime has to create an interop object based on your interface definition that maintains a pointer to the COM
object. On each method call, the runtime has to use the interface definition to marshal the data through to the
COM interface and process the return value, throwing an exception on failure. Because there is a fixed cost
associated with each method call, it is better to implement the COM object to use fewer methods but pass more
data in each method call. Obviously this is an option only if you write the particular COM component yourself.

Importing COM Libraries

If you have the .dll file or the type-library (.tlb) file available on your development computer, you can have
Visual Studio automatically create a wrapper library for you that generates the required interface definitions. You
can use a similar method when adding a reference to a .NET DLL: in the Add Reference dialog box, select Browse,
and then locate the .dll or .tlb file. Visual Studio will create a new .dll file for you that is a managed interop
library for the COM library you selected.

Manually Defining Interfaces

Because there isn't a type library for CEMAPI, you must manually create the interface definitions. This may seem
like a daunting task, but you will use the native header files from the SDK and work through copying the
interface definitions. There are a number of syntax changes between the C++ COM header and the C# definition,
and you must make sure you replace native types with their managed equivalents. The main interface into
CEMAPI is IMAPISession.

To show that an interface belongs to a COM component, you must add the ComImportAttribute to the interface.
You must also add a GuidAttribute that contains the interface identifier. CEMAPI headers are slightly
nonstandard, so the full globally unique identifier (GUID) is not documented for each interface; however, GUIDs
are all of the form xxxxxxxx-0000-0000-C000-000000000046, where the first 8 digits are documented in
mapiguid.h. In practice, this looks like the following declaration for IMAPISession.

[ComImport, Guid("00020300-0000-0000-C000-000000000046"),
 InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
internal interface IMAPISession

Interface Types

The third and final attribute required is the InterfaceTypeAttribute, which specifies whether the interface you are

declaring is derived from IUnknown or IDispatch. The interface type affects the layout of the VTable because
IDispatch contains other methods before those you are declaring. IUnknown contains only methods to maintain
the object's reference count and to retrieve alternative interfaces for the object. Every other method must be
called explicitly from its position on the VTable. On the other hand, IDispatch also has methods for querying the
methods on the interface and invoking them by ID. You can use this method to call code to use the object
without explicitly knowing the supported methods and VTable definition, which is known as late binding and is
fundamental to ActiveX and scripting of objects.

Three members are defined in the ComInterfaceType enumeration:

InterfaceIsDual The default value that specifies that the defined interface follows the standard IDispatch
method in the VTable. Calling code can call methods either through early binding to the VTable or through
late binding by calling the IDispatch methods (GetIDsOfNames and Invoke).

InterfaceIsIDispatc Indicates that only the IDispatch methods are exposed and that all the methods you
have defined must be called through late binding.

InterfaceIsIUnknow Specifies that the interface you have declared follows the IUnknown methods in the
VTable. These can be called only by early binding.

All the CEMAPI interfaces are derived from IUnknown, so that you must add the InterfaceTypeAttribute to the
definition.

COM Error Handling

COM methods normally return an HRESULT, which is a 4-byte integer that contains 0 on success or an error code.
There is a standard range of error codes for COM errors, and there may be additional codes specific to a
component. When you define a COM method in your code, you set the return type to void by default because the
runtime checks the return value and will throw an exception specific to the error code returned. If the error
doesn't match a framework exception, a generic COMException containing the error code is thrown.

You can override this behavior by adding the PreserveSigAttribute to a method and setting the return type, for
example, to Int32. In this way, you can get the return value and act on it without necessarily throwing an
exception. This is necessary in some cases when methods don't return an HRESULT but some other value. If you
want to throw a relevant exception manually based on an HRESULT value, you can use the
Marshal.ThrowExceptionForHR method.

Specific Device Issues

In the CEMAPI sample, some methods are not implemented, and therefore you must not call them; each
unimplemented method is marked with a comment. The reason some methods are not implemented is that the
interface matches the IMAPISession interface used on the desktop version of Windows. Even though these
methods are unused, they must be declared so that the following methods are in the correct location in the
VTable. Because these methods are not implemented, the function pointer at the unused method's position in
the VTable is null. Also, notice that when comparing the IMAPISession interface in managed code with the
original in cemapi.h, we declared some output parameters as IntPtr types even though they should return a
specific interface type, such as the GetMsgStoresTable method.

void GetMsgStoresTable(int ulFlags, out IntPtr lppTable);

//This is how the method _should_ be defined.
//void GetMsgStoresTable(int ulFlags, out IMAPITable lppTable);

//This is the native definition.
//MAPIMETHOD(GetMsgStoresTable)
// (THIS_ ULONG ulFlags,
// LPMAPITABLE FAR * lppTable) IPURE;

Typically, returning a specific interface is supported, but CEMAPI doesn't follow the golden rules of COM and fails
to implement the key method from the IUnknown interface—QueryInterface. Usually, QueryInterface should at
the very least support a request with the GUID for IUnknown or the specific interface's own identifier and return
a copy of itself. It should fail only if the requested interface identifier passed in is not supported. This is a
problem because the COM interop support in .NET Compact Framework performs a QueryInterface on the pointer
as soon as it gets it, and this operation will fail with all the CEMAPI interfaces. The only time you have declared a
COM interface type as a parameter is to the Advise method because you know that the .NET Compact Framework
runtime will correctly implement IUnknown on the IMAPIAdviseSink interface you are exposing.

To work around this issue—which should not be a problem with well-written COM components—you can use a
third-party class to perform some manipulation on the pointer before casting it to the correct interface type. This
problem is known to occur with a number of operating system interfaces that are part of the CEMAPI, Object
Exchange (OBEX), and Imaging APIs. The workaround is implemented in the Mobile In The Hand library, of
which a free Community Edition exists containing this functionality (www.inthehand.com/WindowsMobile.aspx).
We look at the library again in Chapter 17, "Developing with Windows Mobil," because it contains some useful
Windows Mobile–specific functionality.

You are now ready to look at the completed interface declaration in Listing 14-2, which is accompanied by some

additional required declarations.

Listing 14-2. Managed Definition of COM Interfaces for CEMAPI

using System;
using System.Runtime.InteropServices;

namespace COMInterop
{
 internal static class NativeMethods
 {
 [DllImport("cemapi.dll")]
 internal static extern int MAPIInitialize(IntPtr lpMapiInit);

 [DllImport("cemapi.dll")]
 internal static extern int MAPIUninitialize();

 [DllImport("cemapi.dll")]
 internal static extern int MAPILogonEx(int ulUIParam,
 string lpszProfileName, string lpszPassword, int flFlags,
 out IntPtr lppSession);

 [DllImport("cemapi.dll")]
 internal static extern int MailDisplayMessage(byte[] lpEntryID,
 int cbEntryID);
 }

 [ComImport, Guid("00020300-0000-0000-C000-000000000046"),
 InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
 internal interface IMAPISession
 {
 void GetLastError();//Not supported

 void GetMsgStoresTable(int ulFlags, out IntPtr lppTable);

 void OpenMsgStore(int ulUIParam, int cbEntryID, byte[] lpEntryID,
 int lpInterface, int ulFlags, out IntPtr lppMDB);

 void OpenAddressBook();//Not supported
 void OpenProfileSection();//Not supported
 void GetStatusTable();//Not supported

 void OpenEntry(int cbEntryID, byte[] lpEntryID, int lpInterface,
 int ulFlags, out int lpulObjType, out IntPtr lppUnk);

 void CompareEntryIDs(Int32 cbEntryID1, byte[] lpEntryID1,
 Int32 cbEntryID2, byte[] lpEntryID2, int ulFlags,
 out int lpulResult);

 void Advise(int cbEntryID, byte[] lpEntryID, fnev ulEventMask,
 IMAPIAdviseSink lpAdviseSink, out int FlpulConnection);

 void Unadvise(int ulConnection);

 void MessageOptions();//Not supported
 void QueryDefaultMessageOpt();//Not supported
 void EnumAdrTypes();//Not supported
 void QueryIdentity();//Not supported
 void Logoff(int ulUIParam, int ulFlags, int ulReserved);

 void SetDefaultStore();//Not supported
 void AdminServices();//Not supported
 void ShowForm();//Not supported
 void PrepareForm();//Not supported

 }

 [ComImport, Guid("00020302-0000-0000-C000-000000000046"),
 InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
 internal interface IMAPIAdviseSink
 {
 void OnNotify(uint cNotif, ref NOTIFICATION lpNotifications);
 }

 [Flags()]

 internal enum fnev
 {
 ObjectCopied = 0x00000040,
 ObjectCreated = 0x00000004,
 ObjectDeleted = 0x00000008,
 ObjectModified = 0x00000010,
 ObjectMoved = 0x00000020,
 }

Structures with Unions

The NOTIFICATION type is an example of a union where a structure can contain different nested structures at the
same position, depending on the event type. To support this, you can add the StructLayoutAttribute to the
structure and specify that fields will be laid out explicitly. Then you can add the FieldOffsetAttribute to each field
to define its position in the structure; in this way, multiple nested structures can appear at the same field offset.
You must be careful when reading from the structure that you use the correct type so you do not misinterpret the
data. We commented out the original union from the definition, and because we are only supporting new mail
notifications in this sample, we have defined only the NEWMAIL_NOTIFICATION nested structure.

[StructLayout(LayoutKind.Explicit)]
internal struct NOTIFICATION
{
 /* notification type, i.e. fnevSomething */
 [FieldOffset(0)]
 public fnev ulEventType;

 //This is how the union member was originally defined.
 //union
 //{
 //ERROR_NOTIFICATION err;
 [FieldOffset(8)]
 public NEWMAIL_NOTIFICATION newmail;
 //OBJECT_NOTIFICATION obj;
 //TABLE_NOTIFICATION tab;
 //EXTENDED_NOTIFICATION ext;
 //STATUS_OBJECT_NOTIFICATION statobj;
 //} info;
}

internal struct NEWMAIL_NOTIFICATION
{
 public int cbEntryID;
 public IntPtr lpEntryID; /* identifies the new message */
 public int cbParentID;
 public IntPtr lpParentID; /* identifies the folder it lives in */
 public uint ulFlags; /* 0 or MAPI_UNICODE */
 [MarshalAs(UnmanagedType.LPTStr)]
 public string lpszMessageClass; /* message class */
 public uint ulMessageFlags; /* copy of PR_MESSAGE_FLAGS */
}

To add support for the other event types, you must repeat with the other structure types and also mark them
with a field offset of 8. Then you must hook up some code on the application form to initialize Messaging API
(MAPI) and hook up the IMAPIAdviseSink interface. For simplicity, make the main form expose this interface.

Using InTheHand.Runtime.InteropServices

internal partial class Form1 : Form, IMAPIAdviseSink
 {
 //MAPI session
 IMAPISession session;
 //an ID used by the advise method
 int connection;

Store the connection ID that the session assigns to each caller of the Advise method. You must pass this to
Unadvise when you close down the application. All of the initialization is placed in the Load event hander for the
form.

private void Form1_Load(object sender, EventArgs e)
{
 int hresult = NativeMethods.MAPIInitialize(IntPtr.Zero);

 IntPtr psession;
 hresult = NativeMethods.MAPILogonEx(0, null, null, 0, out psession);
 //fix for improper COM implementation
 session = (IMAPISession)Marshal2.GetTypedObjectForIUnknown(psession,
 typeof(IMAPISession));

 session.Advise(0, null, fnev.ObjectCreated, this, out connection);
}

The OnNotify method is very simple and uses MailDisplayMessage, a Windows Mobile 5.0 native API, to display
the affected message. If you want to get properties from the specific message, you can define additional
interfaces and structures, but this is beyond the scope of this example.

public void OnNotify(uint cNotif, ref NOTIFICATION lpNotifications)
{
 switch (lpNotifications.ulEventType)
 {
 case fnev.ObjectCreated:
 byte[] entryid =
 new byte[lpNotifications.newmail.cbEntryID];
 Marshal.Copy(lpNotifications.newmail.lpEntryID, entryid, 0,
 entryid.Length);
 //Play a notification sound.
 Chapter14.Media.SystemSounds.Asterisk.Play();
 NativeMethods.MailDisplayMessage(entryid, entryid.Length);
 break;
 }
}

ActiveX Controls

As already mentioned, the Compact Framework has only a subset of the full COM interop functionality present in
the full .NET Framework. The Compact Framework does not directly support hosting ActiveX controls; however,
the underlying COM support makes it possible by defining additional classes. For more information about adding
ActiveX control hosting and the required sample code to do it, see the Microsoft MSDN Web site at
msdn2.microsoft.com/en-us/library/aa446515.aspx.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

In this chapter, we investigated the various methods available to interoperate with native code, including
functionality that is part of the underlying platform or in third-party SDKs or your own legacy C++ code. Version
2.0 of the Compact Framework has greatly improved interop functionality and supports both Platform Invoke for
static C++ functions and COM interop for COM interfaces. After you can apply the basic techniques of defining
your Platform Invoke declarations and know how to marshal the various types available in managed code, you
can access a wide array of functionality without losing all your existing native code assets.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 15. Building Custom Controls

In this chapter:

Extending Existing Controls 525

Creating Custom Controls 527

Programming the Design-Time Experience 532

The Microsoft .NET Compact Framework version 2.0 includes a powerful set of Windows controls. Although these
controls are a subset of what is available to a desktop developer, controls for dealing with a wide variety of data
types and interaction scenarios are available. In this chapter, we investigate how you can go beyond the built-in
controls. First, we examine extending the functionality of existing controls, and then we look at creating new
custom controls from scratch. We create the necessary design-time support so that your controls can be easily
used in the Microsoft Visual Studio Form Designer.

Extending Existing Controls

The simplest scenario you will encounter when requiring a specific control is one in which you want to alter the
behavior of an existing control or add some functionality to it. All the standard controls are wrappers around
native common controls that are present in Microsoft Windows CE. These standard controls, as you can imagine,
are a subset of those included in desktop versions of the Windows operating system, which is one of the reasons
why the .NET Compact Framework controls are more limited than their desktop counterparts. All standard
controls are derived from the Control class in the System.Windows.Forms namespace.

The Control class has a Handle property that is the native window handle (HWND) for the native control that is
wrapped. There are two ways to interact with an existing control: you can intercept managed events from the
control and override the behavior, or you can use native interop on the control using the value of the Handle
property to set a native style that is not implemented in the managed control.

Overriding Events

Sometimes you will require text input in a particular format, for example, you must allow only numerals to be
entered. You don't have to build your own control from scratch to achieve this. In this section, we implement a
text control designed to accept only numerals. By inheriting from the TextBox control, you can override the way
the control responds to key presses and ignore those you don't want to accept. You must override the
OnKeyPress and OnKeyDown methods and check the key code received. Depending on the type of keyboard the
device has, key codes can be either the Keys.D0 to D9 values or Keys.NumPad0 to Numpad9. You must also let
the Keys.Back through so that the user can delete a character from the text box. You check the value in the
OnKeyDown method and set a flag if you want to block the character. If this flag is set when OnKeyPress is
called, you mark the keyboard event by setting the Handled property to true to ensure that it is not passed to
the native control. The NumericTextBox is defined in Listing 15-1.

Listing 15-1. NumericTextBox Control

using System;
using System.Windows.Forms;

namespace Chapter15.Windows.Forms

{

 public class NumericTextBox : TextBox

 {

 private bool blockedKey = false;

 protected override void OnKeyPress(KeyPressEventArgs e)

 {

 if (blockedKey)

 {

 e.Handled = true;

 }

 }

 protected override void OnKeyDown(KeyEventArgs e)

 {

 blockedKey = false;

 if (e.Shift == true || e.Alt == true)

 {

 blockedKey = true;

 return;

 }

 if (e.KeyCode < Keys.D0 || e.KeyCode > Keys.D9)

 {

 if (e.KeyCode < Keys.NumPad0 || e.KeyCode > Keys.NumPad9)

 {

 if (e.KeyCode != Keys.Back)

 {

 blockedKey = true;

 }

 }

 }

 }

 }

}

Because the standard forms controls in the Compact Framework are built around the native Windows controls, it
is not possible to change the drawing behavior of the controls. If you must change the appearance of a standard
control, you need to build your own custom control with custom drawing code.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Creating Custom Controls

When you must create a new control from scratch, you have two different classes from which you can inherit. The
first is Control, which is the base class from which all controls are derived, including the standard framework
controls. The other is UserControl, which is a special class, new to .NET Compact Framework 2.0, that is designed
especially to support user-designed and user-created controls. It is important to understand the functional
differences between the two classes before you start to create a custom control.

UserControl is derived from the ContainerControl class, which in turn inherits from ScrollableControl. These two
classes add support for hosting child controls, managing their layout, and supporting scrolling. The scrolling
support can be very useful because you can define the control's area and lay out controls, but if the user control
is resized, it will automatically have scroll bars applied to it if necessary. UserControl adds support for a design
canvas for the control that you can use to lay out elements of the control visually, just like designing a form. It
also adds properties for common functionality such as setting the border appearance for the control.

UserControl

To help you understand the UserControl, you will build a sample control that uses the designer functionality
available for the UserControl. The control is designed specifically for entering a 4-digit personal identification
number (PIN) and is composed of a NumericTextBox, which was created earlier in this chapter, and a keypad
made up of several Button controls.

You can do the majority of the work to create the control in the designer. Just as when you design a form, you
have access to the properties and events of each control from the designer window. You can add buttons to make
up a keypad that includes buttons for the characters 1 to 9, along with a zero button and a backspace button. To
simplify the code, you can hook the Click event of each of the numbered buttons to a single event handler
method. This looks at the sending control and places its caption in the text box.

private void btn_Click(object sender, EventArgs e)
{
 Button b = (Button)sender;
 if (!IsEntered)
 {
 txtPin.Text += b.Text;
 }
}

The backspace button has a separate event handler that removes the last character from the text box. Figure
15-1 shows the PinUserControl in the Visual Studio designer.

Figure 15-1. PinUserControl in the Visual Studio designer

[View full size image]

Exposing Properties

You now have a functioning control that you can add to a project and build and deploy; however, although you
have added functionality to the control, you haven't exposed any public properties. This means the form you put
the control onhas no idea what PIN (if any) was entered. Because all classes derived from Control have a Text
property, you can override this property so that it instead returns the text from the numeric text box, which is a
child of the control. You must provide read-only access to the Text property so that the calling application can
retrieve the PIN. It would also be useful to expose a property to indicate whether the entered PIN is the required
4 digits long. These two properties are defined as follows:

public override string Text
{
 get
 {
 return txtPin.Text;
 }
}

public bool IsEntered
{
 get
 {
 return (txtPin.Text.Length == 4);
 }
}

Exposing Events

As described, the custom control has no specific events of its own, and neither are the events of any of the child
controls accessible to the hosting form. An important event to include in this control is one to signal when the
user has changed the entered text. You can add the PinChanged event that is triggered whenever the
TextChanged event occurs in the numeric text box. The event and a helper method to raise the event are
included in the following code sample. The helper method simply checks whether there is a method registered to
handle the event—you must raise an event only when there is at least one handler set to react to it.

public event EventHandler PinChanged;

protected virtual void OnPinChanged(object sender, EventArgs e)
{
 if (this.PinChanged != null)
 {
 PinChanged(sender, e);
 }
}

The following handler method for the TextChanged event of the text box calls the OnPinChanged method.

private void txtPin_TextChanged(object sender, EventArgs e)
{
 OnPinChanged(sender, EventArgs.Empty);
}

Control

Although deriving a class from the Control class doesn't give you the same designer experience, it does give you
a very similar array of inherited functionality. If you are building a control that must draw its own content and
doesn't simply wrap existing controls, building from the Control base class can make sense because you won't be
able to see the effect of your painting code anyway.

To understand a custom-drawn control, you can create a clock control to display an analog clock face. This can
help demonstrate how you can redraw your control without just reacting to external events. The control hosts a
Timer component to update once every second and redraw the correct hand positions. But first, before you create
the control, we must introduce the concept of double buffering.

Double Buffering

Drawing individual items to the screen in the OnPaint method of the control can introduce flickering. You can
mitigate screen flicker by using a technique called double buffering, which is covered in Chapter 12, "Graphics
Programming." In this case, because the Timer specifies when the redrawing is required, you perform all the
drawing operations in the Tick handler of the timer control. A helper method, GetHandPoint is included to use the
System.Math functionality to determine the positions of each of the clock hands.

protected override void OnPaint(PaintEventArgs pe)
{
 // Draw the previously created buffer.
 pe.Graphics.DrawImage(doubleBuffer, 0, 0);

 // Calling the base class OnPaint
 base.OnPaint(pe);
}

private void timerClock_Tick(object sender, EventArgs e)
{
 // Update the hands.
 DateTime d = DateTime.Now;
 double angle = d.Second * (Math.PI / 30);
 second = GetHandPoint(center, angle, minuteHand);
 angle = d.Minute * (Math.PI / 30);
 minute = GetHandPoint(center, angle, minuteHand);
 angle = d.Hour * (Math.PI / 6);
 hour = GetHandPoint(center, angle, hourHand);

 Graphics g = Graphics.FromImage(doubleBuffer);
 g.Clear(this.BackColor);

 g.FillEllipse(new SolidBrush(faceColor), 0, 0,
 shortestSide, shortestSide);
 g.DrawEllipse(grayPen, 0, 0, shortestSide, shortestSide);

 //Draw quarter marks.
 g.DrawLine(grayPen, center.X, 2, center.X, hourMarks);
 g.DrawLine(grayPen, 2, center.Y, hourMarks, center.Y);
 g.DrawLine(grayPen, shortestSide - hourMarks, center.Y,
 shortestSide - 2, center.Y);
 g.DrawLine(grayPen, center.X, shortestSide - hourMarks,
 center.X, shortestSide - 2);

 //Draw hands.
 g.DrawLine(blackPen, center.X, center.Y, hour.X, hour.Y);

 g.DrawLine(blackPen, center.X, center.Y, minute.X, minute.Y);
 g.DrawLine(grayPen, center.X, center.Y, second.X, second.Y);

 g.FillEllipse(new SolidBrush(Color.Black),
 center.X - 2, center.Y - 2, 4, 4);
 g.Dispose();

 Refresh();
}

private static Point GetHandPoint(Point center, double angle,
 int handlength)
{
 Point p;

 if (angle > 270)
 {

 angle = angle - 270;
 int height = Convert.ToInt32(Math.Sin(angle) * handlength);
 int width = Convert.ToInt32(Math.Cos(angle) * handlength);
 p = new Point(center.X + width, center.Y + height);
 }
 else if (angle > 180)
 {
 angle = angle - 180;
 int width = Convert.ToInt32(Math.Sin(angle) * handlength);
 int height = Convert.ToInt32(Math.Cos(angle) * handlength);
 p = new Point(center.X - width, center.Y + height);
 }
 else if (angle > 90)
 {
 angle = angle - 90;
 int height = Convert.ToInt32(Math.Sin(angle) * handlength);
 int width = Convert.ToInt32(Math.Cos(angle) * handlength);
 p = new Point(center.X + width, center.Y + height);
 }
 else
 {
 int width = Convert.ToInt32(Math.Sin(angle) * handlength);
 int height = Convert.ToInt32(Math.Cos(angle) * handlength);
 p = new Point(center.X + width, center.Y - height);
 }

 return p;
}

Screen Resizing

Many devices have the ability to change their screen size on the fly, either by using software or by hardware
manipulation such as rotating a screen panel. Devices can also come in a wide variety of screen resolutions, so
when you build reusable controls you must be aware of how they might appear on different devices. In the Clock
control, you handle the Resize event so that if the control's dimensions change at run time you can recalculate
the size of the clock face and hands so that the clock is displayed correctly in the available screen space.

protected override void OnResize(EventArgs e)
{
 if(Width > Height)
 {
 shortestSide = this.Height;
 }
 else
 {
 shortestSide = this.Width;
 }

 center = new Point(shortestSide / 2, shortestSide / 2);

 //Dispose of old buffer.
 if (doubleBuffer != null)
 {
 doubleBuffer.Dispose();
 }

 doubleBuffer = new Bitmap(shortestSide, shortestSide);
 minuteHand = (shortestSide / 2) - 4;
 hourHand = (shortestSide / 4);
 hourMarks = (shortestSide / 8);

 base.OnResize(e);
}

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Programming the Design-Time Experience

Visual Studio applies the most basic design-time experience to a custom control with no additional work. If your
library contains any Platform Invocation Services (PInvoke) code, Visual Studio works on the assumption that
your control may not be compatible with the host Windows operating system, and it simply draws a sizable box
with the name of the control as a placeholder. The control is visible in the Toolbox only in other projects in the
same solution.

To customize the design-time experience, you must add a number of attributes to describe the designer
behavior. When you create controls for smart device projects, these attributes are not applied to the code directly
but rather are applied by using a special Extensible Markup Language (XML) format in an .xmta file. If you are
familiar with creating controls for the full .NET Framework, you will be accustomed to applying attributes directly
to your control code.

During the build process, the .xmta file is used to create a design-time .dll file that contains this metadata. The
name of this .dll file is the name of your assembly, followed by the platform type you are targeting (PocketPC,
Smartphone, or WindowsCE), and finally the .asmmeta.dll extension. This .dll file contains no actual code, just
stubs with the required design-time attributes. After you build this library, the designer will use it only on the
specific platform for which it was built. You will write the example control library to target the PocketPC platform.
This means that if you were to try to use the control library from a Smartphone project, the .asmmeta file would
be ignored and the default behavior would be applied. We look at the process of custom-building .asmmeta files
in the section titled "Custom Metadata Assemblies" later in this chapter.

Attributes

To add attributes to the custom control, you must add a new type of file to the project. Select Add New Item
from the Project menu, and then select Design-Time Attribute File for device projects. This adds an .xmta file to
the project, and in this file you can add the XML to describe the attributes to apply to the custom control. You
can have a single .xmta file in a project and define several different controls in it, or you can create a separate
.xmta file for each control—the choice is entirely yours.

Visual Studio includes Microsoft IntelliSense support to show valid items as you type, and the document starts
with the required Classes element. In this, you add a Class item for each custom control, specifying the full
namespace and class name in the Name attribute. You can then add subitems to this element for each Property
and Event you want to describe. The majority of the attributes are direct equivalents of the desktop attributes
you would apply directly in the code; these are used to add descriptions and default values and to define in
which groups the events and properties appear in the project properties window in the designer. In the following
sections, we look into a few device-specific attributes.

DesktopCompatible

If your library contains any PInvoke code, the designer doesn't trust that a custom component is safe to
instantiate on the desktop. In such a scenario, the designer uses a generic designer that allows you only to site
the control on the form, as illustrated in Figure 15-2.

Figure 15-2. PinUserControl in a consuming application, when not marked as DesktopCompatible

[View full size image]

If your control code is completely desktop compatible and doesn't contain any device-specific functionality, you
can easily inform the designer by adding the DesktopCompatible attribute with a value of true to your class
definition in the .xmta file. With this set and the project recompiled, the designer will use your custom drawing
logic and the control will appear in the designer as it will be drawn on a real device. Figure 15-3 shows the result
of adding the DesktopCompatible attribute to the PinUserControl.

Figure 15-3. PinUserControl in a consuming application, when marked as DesktopCompatible

[View full size image]

Custom Property

When you add a new property to a control, the designer shows it as long as the designer can support the
datatype. However, the new property will not have as rich functionality as the standard control properties. The
standard designer behavior for new properties is to add them to the Misc section of the properties table, and they
will have no description. This is shown in Figure 15-4.

Figure 15-4. Default appearance of the ButtonColor property

You can add an attribute for the category that is specified as a string value. Use the existing category names
before creating different ones. For example, a control's BackColor property appears in the Appearance category;
the PinUserControl introduces a ButtonColor property for the keypad buttons, so we assign this to the
Appearance category also.

When you write the code to create the control, you set certain default values for properties. By specifying the
default value for the ButtonColor property, you can tell the designer not to generate code when the default value
is chosen and to correctly highlight the property in bold type when it has been changed to an alternative value.
When you set a default value, you must specify both the data type and the value in string form. Unless the data
type is defined in Mscorlib, you must specify the full type name, including the assembly name, version, culture,
and public key token. This is illustrated in the following code sample, which shows the attributes applied to the
ButtonColor property. The result of applying this customization is shown in Figure 15-5. Applying these
attributes to the control's properties and events can greatly improve the design-time experience.

<Property Name="ButtonColor">
 <Category>Appearance</Category>
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>ActiveCaption</Value>
 </DefaultValue>
 <Description>Sets a color for the keypad button faces.</Description>
</Property>

Figure 15-5. Results of applying design-time attributes to the ButtonColor property

DefaultEvent

By adding a DefaultEvent attribute to the control you can specify which event is selected when the user double-
clicks the control on the design surface. For example, on the Button control this would be the Click event. For the
PinUserControl, this is set to the PinChanged event because you are not exposing individual button presses
occurring in the control. The event is specified by name:

<DefaultEvent>PinChanged</DefaultEvent>

EditorBrowsable

Sometimes you'll want to hide functionality from the designer, such as when a property is relevant only at run
time. When the designer inspects your control to build the properties list, it includes properties that are
read-only, which appear dimmed and unavailable. In the PinUserControl, the IsEntered property can be queried
at run time to determine whether the full PIN code has been entered. At design time, this has no meaning, and
therefore this property can be hidden by setting the EditorBrowsable attribute to false.

<Property Name="IsEntered">
 <EditorBrowsable>false</EditorBrowsable>
</Property>

Custom Property Types

The designer implements standard design-time behavior for standard .NET types such as strings, integers,
colors, and so forth. If your control uses a custom type in one or more of its properties, you must provide
additional details to the designer to describe how the type should be handled. For example, the Clock class
implements the ColorScheme property, which is of type ColorScheme. This type consists of a number of Color
properties used to define the clock appearance. Visual Studio does not know how to display this property, so the
property remains unavailable in the properties window.

For types that are themselves a collection of standard framework types, you can apply the TypeConverter
attribute with the ExpandableObjectConverter type. This adds the property as an expandable tree showing the
properties in the type. You can add descriptions and default values by adding entries for your custom type, in
this case, the ColorScheme type, in the .xmta file. The code for the Clock and ColorScheme types is shown in
Listing 15-2.

Listing 15-2. Clock Control Attributes

<?xml version="1.0" encoding="utf-16"?>
<Classes>
 <Class Name="Chapter15.Windows.Forms.Clock">
 <DesktopCompatible>true</DesktopCompatible>

 <Property Name="ColorScheme">
 <Category>Appearance</Category>
 <Description>The color scheme used to render the clock.</Description>

 <TypeConverter>System.ComponentModel.ExpandableObjectConverter,
System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089</TypeConverter>
 </Property>

 </Class>

 <Class Name="Chapter15.Windows.Forms.ColorScheme">
 <TypeConverter>
 System.ComponentModel.ExpandableObjectConverter, System,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089
 </TypeConverter>
 <DesktopCompatible>true</DesktopCompatible>

 <Property Name="BorderColor">
 <Description>Color used for the clock border</Description>
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>Gray</Value>
 </DefaultValue>
 <NotifyParentProperty>true</NotifyParentProperty>
 </Property>
 <Property Name="FaceColor">
 <Description>Color used for the clock face</Description>
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>LightBlue</Value>
 </DefaultValue>
 <NotifyParentProperty>true</NotifyParentProperty>
 </Property>
 <Property Name="HandColor">
 <Description>Color used for the hour and minute hands</Description>
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>Black</Value>
 </DefaultValue>
 <NotifyParentProperty>true</NotifyParentProperty>
 </Property>
 </Class>
</Classes>

The properties window now shows the ColorScheme property as an expandable type (see Figure 15-6), and, as
expected, changes in the properties of the ColorScheme object are reflected in the control in the designer.

Figure 15-6. Expandable property in the designer

Class Diagrams

In the previous examples, you have worked directly with the .xmta file to specify attributes for the controls. You
can also modify these same attributes through the Class Diagram Designer in Visual Studio. When an item is
selected in the diagram, the properties window will contain an entry called Custom Attributes, as shown in Figure
15-7.

Figure 15-7. Custom Attributes in the class diagram

[View full size image]

This property has an ellipsis (...) button that allows you to open the Custom Attributes list in a dialog box for
easier editing. Attributes entered here are in their .NET syntax rather than how you would define them in an
.xmta file. Figure 15-8 shows the attributes applied to the Clock.ColorScheme property.

Figure 15-8. Custom Attributes dialog box showing attributes applied to the ColorScheme

property

[View full size image]

Listing 15-3 shows the complete .xmta file for the ControlLibrary project. It shows how to hide properties derived
from the parent class, how to override default values, and how to add descriptions and designer behavior to
newly defined properties.

Listing 15-3. Attribute File Listing

<?xml version="1.0" encoding="utf-16"?>
<Classes xmlns="...">
 <Class Name="Chapter15.Windows.Forms.Clock">
 <DesktopCompatible>true</DesktopCompatible>

 <Property Name="Width">
 <DefaultValue>
 <Type>System.Int32</Type>
 <Value>128</Value>
 </DefaultValue>
 </Property>
 <Property Name="Height">
 <DefaultValue>
 <Type>System.Int32</Type>
 <Value>128</Value>
 </DefaultValue>
 </Property>

 <Property Name="ColorScheme">
 <Category>Appearance</Category>
 <Description>The color scheme used to render the clock.</Description>
 <TypeConverter>System.ComponentModel.ExpandableObjectConverter,
System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089</TypeConverter>
 </Property>

 </Class>

 <Class Name="Chapter15.Windows.Forms.ColorScheme">
 <TypeConverter>
 System.ComponentModel.ExpandableObjectConverter, System,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089
 </TypeConverter>
 <DesktopCompatible>true</DesktopCompatible>

 <Property Name="BorderColor">
 <Description>Color used for the clock border</Description>
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>Gray</Value>
 </DefaultValue>
 <NotifyParentProperty>true</NotifyParentProperty>
 </Property>
 <Property Name="FaceColor">
 <Description>Color used for the clock face</Description>
 <DefaultValue>

 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>LightBlue</Value>
 </DefaultValue>
 <NotifyParentProperty>true</NotifyParentProperty>
 </Property>
 <Property Name="HandColor">
 <Description>Color used for the hour and minute hands</Description>
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>Black</Value>
 </DefaultValue>
 <NotifyParentProperty>true</NotifyParentProperty>
 </Property>
 </Class>
 <Class Name="Chapter15.Windows.Forms.NumericTextBox">
 <DesktopCompatible>true</DesktopCompatible>
 </Class>
 <Class Name="Chapter15.Windows.Forms.PinUserControl">
 <DesktopCompatible>true</DesktopCompatible>
 <DesignTimeVisible>true</DesignTimeVisible>

 <!-- Hide some properties from parent class -->

 <Property Name="AutoScroll">
 <Browsable>false</Browsable>
 <Supported>false</Supported>
 </Property>
 <Property Name="AutoScrollMargin">
 <Browsable>false</Browsable>
 <Supported>false</Supported>
 </Property>
 <Property Name="ContextMenu">
 <Browsable>false</Browsable>
 <Supported>false</Supported>
 </Property>

 <!-- set some default values for existing properties -->

 <Property Name="BackColor">
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>Window</Value>
 </DefaultValue>
 </Property>
 <Property Name="Width">
 <DefaultValue>
 <Type>System.Int32</Type>
 <Value>109</Value>
 </DefaultValue>
 </Property>
 <Property Name="Height">
 <DefaultValue>
 <Type>System.Int32</Type>
 <Value>149</Value>
 </DefaultValue>
 </Property>

 <!-- Describe some new properties -->

 <Property Name="IsEntered">
 <Browsable>false</Browsable>
 <DesignerSerializationVisibility>Never
 </DesignerSerializationVisibility>
 </Property>

 <DefaultEvent>PinChanged</DefaultEvent>
 <Event Name="PinChanged">
 <Category>Action</Category>
 <Description>Occurs when the pin entered by the user changes.
 </Description>
 </Event>

 <Property Name="ButtonColor">

 <Category>Appearance</Category>
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>ActiveCaption</Value>
 </DefaultValue>
 <Description>Sets a color for the keypad button faces.</Description>
 </Property>
 </Class>
</Classes>

Custom Metadata Assemblies

When you are building a control library, Visual Studio doesn't include built-in support to create multiple
.asmmeta files. If you want to support multiple platforms, you have two options: To provide exactly the same
functionality on different platforms, you can copy the existing .asmmeta file and rename it to the required
platform name; to provide different functionality on different platforms, you must do a little extra work.

For example, you may implement different functionality on different platforms in a control library that contains a
number of controls, one or more of which are unsuitable for Smartphones because they rely on components not
available on Smartphones, such as the Button control. In this case, you can hide the control from the designer to
avoid run-time errors if the control is used.

You can manually create .asmmeta.dll files by using the Genasm.exe tool, which is part of Visual Studio. This is a
command-line tool that takes the compiled .dll assembly and the .xmta metadata file and outputs the
.asmmeta.dll file. Use of this tool is not well documented, and it is outside the scope of this book to explain it.
Instead, we look at creating additional platform versions from the same code using Visual Studio.

First, create a new project in the solution, for example, use the project name ControlLibrary.Smartphone and
target the Windows Mobile 5.0 Smartphone platform. Remove the existing AssemblyInfo.cs and UserControl.cs
that are created for you. From the Project menu, select Add Existing Item, select the All Files (*.*) filter, and
then browse to the existing control library project folder. Select all of the source files in this folder except the
.xmta files, and then select Add As Link. This second project now uses all of the same source files as the first
control library project. Repeat this process to add the AssemblyInfo.cs file—this ensures the library has the same
name and version. Finally, add a new design-time attribute file for the project, and paste in the contents of the
.xmta file you created for Pocket PC. Now you can amend this to change the behavior for Smartphone. Then
create a new .xmta file that specifies designer behavior for the controls when used with the Smartphone
platform. Listing 15-4 shows the Smartphone version of the attributes file.

Listing 15-4. Smartphone .xmta File

<?xml version="1.0" encoding="utf-16"?>
<Classes xmlns="http://schemas.microsoft.com/VisualStudio/2004/03/SmartDevices/
XMTA.xsd">

 <Class Name="Chapter15.Windows.Forms.Clock">
 <DesktopCompatible>true</DesktopCompatible>

 <Property Name="Width">
 <DefaultValue>
 <Type>System.Int32</Type>
 <Value>96</Value>
 </DefaultValue>
 </Property>
 <Property Name="Height">
 <DefaultValue>
 <Type>System.Int32</Type>
 <Value>96</Value>
 </DefaultValue>
 </Property>

 <Property Name="ColorScheme">
 <Category>Appearance</Category>
 <Description>The color scheme used to render the clock.</Description>
 <TypeConverter>System.ComponentModel.ExpandableObjectConverter,
System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089</TypeConverter>
 </Property>

 </Class>

 <Class Name="Chapter15.Windows.Forms.ColorScheme">
 <TypeConverter>

 System.ComponentModel.ExpandableObjectConverter, System,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089
 </TypeConverter>
 <DesktopCompatible>true</DesktopCompatible>

 <Property Name="BorderColor">
 <Description>Color used for the clock border</Description>
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>Gray</Value>
 </DefaultValue>
 <NotifyParentProperty>true</NotifyParentProperty>
 </Property>
 <Property Name="FaceColor">
 <Description>Color used for the clock face</Description>
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>LightBlue</Value>
 </DefaultValue>
 <NotifyParentProperty>true</NotifyParentProperty>
 </Property>
 <Property Name="HandColor">
 <Description>Color used for the hour and minute hands</Description>
 <DefaultValue>
 <Type>System.Drawing.Color, System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Type>
 <Value>Black</Value>
 </DefaultValue>
 <NotifyParentProperty>true</NotifyParentProperty>
 </Property>
 </Class>

 <Class Name="Chapter15.Windows.Forms.NumericTextBox">
 <DesktopCompatible>true</DesktopCompatible>
 </Class>

 <Class Name="Chapter15.Windows.Forms.PinUserControl">
 <DesignTimeVisible>false</DesignTimeVisible>
 <Supported>false</Supported>
 </Class>

</Classes>

For Smartphone clients, the preceding code sets the PinUserControl as unsupported and invisible at design time.
This makes no difference to the compiled ControlLibrary.dll, but the ControlLibrary.Smartphone.asmmeta.dll will
stop this control from being added to the Toolbox. The preceding code also changes the default size of the Clock
component because Smartphone devices generally have smaller screen sizes. The ControlLibrary.Smartphone.
asmmeta.dll file is copied to the same folder as ControlLibrary.dll for testing. In a separate project built for
Smartphone, you can see the results after adding the library to the Toolbox, as shown in Figure 15-9.

Figure 15-9. Visual Studio Toolbox showing controls from the ControlLibrary project in a

Smartphone project

Migrating Old Controls

Controls created for Visual Studio 2003 used a completely different architecture for design-time support and are
not supported in Visual Studio 2005 and later. A full description of the steps necessary to rewrite a legacy control
is beyond the scope of this book; however, a good article on this topic is available on the Microsoft MSDN Web
site at msdn2.microsoft.com/en-us/library/aa446500.aspx.

Adding to Visual Studio 2005 Toolbox

When you create a control library and reference it in the same solution, you gain instant access to the designer
support for your controls without deploying any code, as shown in Figure 15-10.

Figure 15-10. Visual Studio Toolbox showing controls from the ControlLibrary project

After you have created a library of reusable controls, you will likely want to reuse them in other projects. In this
section, we look at how to deploy your compiled assemblies to get the same designer support in other device
projects.

To redistribute your control library as an installable package, you must copy your compiled .dll file into a location
where Visual Studio can locate it so that it is shown in the Add Reference dialog box. The exact path will vary
depending on the language settings on the computer and preferences set when installing Visual Studio. You can
retrieve the required path by querying the registry for the default value at:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETCompactFramework\v2.0.0.0\
PocketPC\AssemblyFoldersEx

In this folder is a subfolder called DesignerMetadata, which is where you should place the .asmmeta.dll file
generated for your library. With these two files copied, you are able to add a reference to this library from other
device projects as if it were just a code library. Next, you must customize the Toolbox.

To keep the Toolbox easy to browse, add these custom controls to a new tab: Right-click the Toolbox, select Add
Tab, and in the caption box type a description such as Sample Custom Controls. This new tab is empty, so you
can right-click in it, and select Choose Items. You are presented with a list of .NET components currently
available to the Toolbox. Click the Browse button to locate your control library. After you have selected the
ControlLibrary.dll, when you return to the Choose Items dialog box, you'll see that all available controls in the
library are selected, as illustrated in Figure 15-11.

Figure 15-11. Choose Toolbox Items dialog box populated with new custom controls

[View full size image]

Click OK to return to the Visual Studio designer. The Toolbox tab is populated with the custom controls. If you
drag one to your form, a reference to the ControlLibrary.dll is automatically added to your project. Figure 15-12
shows the completed Toolbox in use in a new device project.

Figure 15-12. Smart device project showing custom Toolbox items and control designer support

[View full size image]

It is possible to automate these steps and automatically populate the Toolbox if you are building a redistributable
control library, but doing so is outside the scope of this book and requires knowledge of the Visual Studio
software development kit (SDK).

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

This chapter examines the creation of several custom control types and follows the development of the control
code with the necessary designer support to provide a rich experience in the Visual Studio Form Designer.
Initially, we looked at the different possible starting points when creating a control—whether to inherit from an
existing control, start with a basic Control type, or use the powerful UserControl, which is new in .NET Compact
Framework 2.0. We investigated how building design-time behavior for smart device controls differs from using
the full .NET Framework. We added the necessary designer attributes to support both simple and complex
property types and provide descriptions and default values. Finally, we looked at the steps necessary to
customize the Toolbox in Visual Studio so that your controls are easily accessible.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 16. Internationalization

In this chapter:

Understanding the Challenges of Globalization 549

Culture 552

Using Language Translation (or Localization) 557

For many years there has been the promise of a "global marketplace," and today that is definitely a reality. In
this online and connected world, the chances of your software application being used in different countries are
very high and very real. The question is: How do you make your software cope with the challenges of respecting
local culture-specific information and rendering a user interface (UI) in various languages? There is a two-part
answer:

Don't hard-code decisions that work only in your specific country, for example, using the colon (:) or

dot (.) as the time separator between hours and minutes; physically isolate such decisions (this

process is known as globalization).

1.

Translate the country-specific elements to satisfy various world markets, for example, French in

Canada or English in South Africa (this process is known as localization).

2.

Both the Microsoft Windows operating system and the Microsoft .NET Framework support globalization and
localization. In fact, globalizing and localizing an application under the .NET Compact Framework on Windows
CE–powered devices is almost identical to doing it under the full .NET Framework on desktop platforms. If you
are familiar with the desktop model, you can skim through this chapter. Similarly, if you are not familiar with the
desktop model, after reading this chapter you can get more in-depth information by using other materials that
describe the desktop model because most of the principles apply equally to devices.

Understanding the Challenges of Globalization

Before we look at the steps needed to ready software for the global marketplace, we must explain some of the
challenges.

Imagine an application that displays the time or maybe parses a string to obtain a time that it will then use
somehow. The code for those two scenarios might look like this:

 private void button1_Click(object sender, EventArgs e)
 {
 this.DisplayThis(DateTime.Now);
 }
 private void DisplayThis(DateTime dt)
 {
 string timeSeparator = ":";
 label1.Text = dt.Hour + timeSeparator + dt.Minute;
 }

 private void menuItem1_Click(object sender, EventArgs e)
 {
 this.ParseThat("13/1/06 23.31.54");
 }
 private void ParseThat(string someTime)
 {
 // someTime comes in as "13/1/06 23.31.54"
 DateTime dt = DateTime.Parse(someTime);
 MessageBox.Show(dt.ToString());
 }

The problem with the preceding code is that it makes assumptions about the date and time formats. In the first
method, it assumes that the time separator is the colon (:). Having a colon in a time display will look wrong to
an Italian user who is accustomed to the dot (.) time separator. The second method will work on a device that is
set up for Italian because the string that comes in representing the date and time is formatted as per the Italian
rules. However, if the device is running under an English culture, the result will be a FormatException when the
DateTime.Parse method is called.

A different example follows:

private void menuItem2_Click(object sender, EventArgs e)
{
 string s = this.ExtractDecimalPoints(12.34);
 label1.Text = s;
}
private string ExtractDecimalPoints(double valueFromNetwork)
{
 // valueFromNetwork comes in as 12.34, but on French culture
 // becomes 12,34.
 string temp = valueFromNetwork.ToString();
 int decimalPoint = temp.IndexOf('.');
 return temp.Substring(decimalPoint + 1);
}

If you are looking at that code and thinking that it returns 34, you are right in some cases and wrong in others.
For example, in most French-speaking countries (but not Switzerland!), the decimal separator is a comma (,),
and that means the preceding code would incorrectly return 12,34.

Try to spot what is wrong with this third example:

private void button2_Click(object sender, EventArgs e)
{
 label1.Text = this.FirstDayOfWeekToString();
}
private string FirstDayOfWeekToString()
{
 return DayOfWeek.Monday.ToString();
}

Most Europeans would agree that Monday is the first day of the week; however, in the United States, Sunday is
considered the first day of the week. Furthermore, regardless of which day you determine to be the first day of
the week, calling ToString on the enumeration will always produce an English string, which clearly is not desired
if the device is set up for a non-English language.

In all three examples, the code would either fail at run time or produce incorrect results. In some cases, it should
be rewritten to be aware of the settings that the user has chosen, and in others it should be rewritten to behave
consistently regardless of the device settings. For example, storing and retrieving a value from a database may
have to happen in a consistent format regardless of how the value is rendered on the screen. Of course,
globalization is not limited to dates and numbers; it extends to calendars, currencies, string comparisons, and
more. You must write code that is aware of all these cases.

Globalization even affects how you address folders in the file system. You should never hard-code paths to files
or folders under \My Documents or \Program Files because these standard folders have local language names on
devices running localized versions of Windows CE or Windows Mobile. To find the correct folder name for these
standard folders, use the Sstem.Environment.GetFolderPath method, which takes as a parameter a
System.Environment.SpecialFolder enumerated value to indicate the folder that you want. For example, use the
following code to get the correct path to the folder, which in English is \My Documents:

string myDocsPath =
 System.Environment.GetFolderPath(Environment.SpecialFolder.Personal);

Next, we revisit the important concept of a culture and then see how to take advantage of culture in your .NET
applications.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Culture

The words country and language are not fine-grained concepts because some countries use more than one official
language (for example, Belgium) and some languages are used in more than one country (for example, French in
Canada and French in France). It is for this reason that in computing, International Organization for
Standardization (ISO) standards describe unique combinations of languages and regions; for example, fr-FR
specifies French in France whereas fr-CA denotes French in Canada. In addition, Windows defines a locale culture
identifier (LCID) for each unique locale. The following table shows a few examples:

ISO Name English Name Windows LCID

fr-FR French (France) 1036

fr-CA French (Canada) 3084

en-CA English (Canada) 4105

en-GB English (United Kingdom) 2057

el-GR Greek (Greece) 1032

At any one time, Windows is running under a particular locale. The end user can change the locale through the
Regional Settings panel, as shown in Figure 16-1.

Figure 16-1. Regional Settings in the Windows Mobile 6 Professional emulator

[View full size image]

.NET applications typically must be restarted for changes to a locale to take effect because they don't
automatically respond to a setting change. This is not a big issue because Windows Mobile–powered devices
must typically be soft-reset for a locale change to take effect. In any case, when an application is started, it uses

the current locale for any locale-specific decisions. From managed code, the entry point to obtaining and using
locale information is the CultureInfo class from the System.Globalization namespace.

CultureInfo

To obtain the current culture settings, use code as follows:

CultureInfo ci = CultureInfo.CurrentCulture;
this.Text = ci.Name;

Note

In addition to CurrentCulture, CultureInfo also has another property:
CurrentUICulture. For device projects targeting Windows Mobile, the two properties
return the same results, so do not let that confuse you. Note that custom Windows
CE–based devices with Multilingual User Interface (MUI) support may potentially
return different values. See msdn2.microsoft.com/en-us/library/ms904030.aspx for
more information about MUI support in Windows CE.

All threads in a smart device application are set to use the CultureInfo representing the device settings. On the
full framework, you can change the culture on a per-thread basis, but this is not possible on the .NET Compact
Framework, so the properties are not available on the Thread class. However, you can still explicitly create a
CultureInfo object and use it accordingly. For example, drag a combo box and some label/text box pairs onto a
form, as shown in Figure 16-2.

Figure 16-2. Playing with CultureInfo objects

Then add the following code to the form code-behind:

private void Form3_Load(object sender, EventArgs e)
{
 comboBox1.Items.Add(new CultureInfo("fr-FR"));
 comboBox1.Items.Add(new CultureInfo("fr-CA"));

 comboBox1.Items.Add(new CultureInfo("en-GB"));
 comboBox1.Items.Add(new CultureInfo("en-CA"));
 comboBox1.Items.Add(new CultureInfo("el-GR"));
 comboBox1.Items.Add(new CultureInfo("de-DE"));
 comboBox1.Items.Add(new CultureInfo("es-ES"));
 comboBox1.Items.Add(new CultureInfo("de-AT"));
 comboBox1.Items.Add(new CultureInfo("ru-RU"));

 // PlatformNotSupportedException for Japanese
 // comboBox1.Items.Add(new CultureInfo("ja-JP"));

 comboBox1.SelectedIndexChanged +=
 new EventHandler(comboBox1_SelectedIndexChanged);
}

void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
 this.Render((CultureInfo)comboBox1.SelectedItem);
}

private void Render(CultureInfo ci)
{
 textBox1.Text = ci.Name;
 textBox2.Text = ci.EnglishName;
 textBox3.Text = ci.NativeName;
 textBox4.Text = ci.LCID.ToString();
 // Note the use of ToString on enumeration. Bad practice used for demo only.
 textBox5.Text = ci.DateTimeFormat.FirstDayOfWeek.ToString();
 textBox6.Text = ci.NumberFormat.CurrencySymbol;
}

Run the project and change the selection in the combo box to observe different data for each locale. Figure 16-3
shows a few results.

Figure 16-3. CultureInfo data for Russian, Greek, and French (Canada)

[View full size image]

Notice that if you try to create a Japanese CultureInfo object and then try to run in the emulator, a
PlatformNotSupportedException is thrown. That is because you can create CultureInfo objects only for locales
that are supported by your device/target. It is not possible to use a locale that is not supported on the device or
to create a custom culture. Also not possible is support for right-to-left (RTL) languages such as Hebrew and
Arabic. The issue with the latter is that the .NET Compact Framework controls do not expose the RightToLeft

property.[1]

[1] For a discussion of RTL and some possible unsupported workarounds for the simplest of applications, please see Daniel Moth's

blog www.danielmoth.com/Blog/2005/03/progress-on-rtl.html

Caution

You are advised not to try to display your application resources (including dates,
numbers, and other localizable entities) in a language different from the one
currently selected on the device. Although you can program your application to do
that, it is generally more trouble than it is worth; simply advise your user to change
the language of the device in the Regional Settings dialog box and then restart the
application.

Revisiting the Challenges

You can use the CultureInfo object to solve the challenges of device application globalization mentioned earlier in
this chapter. Compare and contrast the following code with the code given earlier. The methods that required
changes are shown in bold type:

 private void DisplayThis(DateTime dt)
 {
 CultureInfo ci = CultureInfo.CurrentCulture;
 string timeSeparator = ci.DateTimeFormat.TimeSeparator;
 label1.Text = dt.Hour + timeSeparator + dt.Minute;
 }

In the preceding code, notice how we use the current CultureInfo to determine what the separator should be.
Whenever you find yourself hard-coding cultural decisions like this, look at the CultureInfo object, which contains
a host of information.

Here we revisit two other methods:

private void ParseThat(string someTime)
{
 // someTime comes in as "13/1/06 23.31.54"
 CultureInfo ci = new CultureInfo("it-IT");
 DateTime dt = DateTime.Parse(someTime, ci);
 MessageBox.Show(dt.ToString());
}

private string ExtractDecimalPoints(double valueFromNetwork)
{
 // valueFromNetwork comes in as 12.34 but in French becomes 12,34.
 string temp = valueFromNetwork.ToString(new CultureInfo("en-US"));
 int decimalPoint = temp.IndexOf('.');
 return temp.Substring(decimalPoint + 1);
}

In both of the examples, observe how we use different overloads of the framework methods to force the
formatting of our choice rather than using the default. In one case, the Parse method and in the other the
ToString method is passed in a CultureInfo object that we explicitly create. Whenever you call framework
methods such as these that have an overload that accepts an IFormatProvider object, you should consider

carefully whether the default or invariant[1] culture is what you require. If not, you should pass in an
IFormatProvider object that conforms to your business logic.

[1] The Invariant culture is a culture-independent CultureInfo object accessible via CultureInfo.InvariantCulture. It is associated

with the English language but not with any specific region.

It is worth clarifying here that formatting data as discussed in this section is important in two specific areas: how
you display it and how you store it. Typically, you display the data formatted to match the end user's
expectations and to match the current device settings. However, typically you store data in a format that is
independent of how you render it, for example, always storing string representations of doubles with a dot (.)
rather than in a locale-specific way. Between the storage and the UI layer, the formatting translation takes place.
In particular, when storing dates, an additional element to consider is the time zone. Storing date and time
information using one time zone and reading it in another can result in incorrect data. If you have such a
scenario, you should use Coordinated Universal Time (UTC) for internal representation and storage. Please see
the methods of the DateTime type, for example, ToUniversalTime, SpecifyKind, and others, described in the
online documentation on the Microsoft MSDN Web site at msdn2.microsoft.com/en-us/library
/system.datetime.aspx.

Finally, let's re-examine the last challenge.

 private string FirstDayOfWeekToString()
 {
 DayOfWeek dow =
 CultureInfo.CurrentCulture.DateTimeFormat.FirstDayOfWeek;
 switch (dow)
 {
 case DayOfWeek.Monday:
 return "Monday";
 case DayOfWeek.Sunday:
 return "Sunday";
 default:
 return "Monday"; //arbitrary decision
 }

 }

The FirstDayOfWeekToString method has been completely rewritten to read the value from the current
CultureInfo rather than make assumptions. It has also been changed not to call ToString on the enumeration.
However, it still uses hard-coded English text, and we revisit this example later in this chapter. We haven't yet
described anything that demonstrates how to work with translated text. That is the subject of the next section.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Using Language Translation (or Localization)

Although formatting data is very important and is in fact the area where most bugs surface in the process of
internationalizing an application, the most visible part of the internationalization process is displaying strings in
the chosen language. .NET Compact Framework developers achieve language translation in the same way that
desktop developers do:

1. Create all localizable strings and images in resource files (text or Extensible Markup Language [XML]

files that are compiled into binary resources files that are then embedded in fallback or satellite

assemblies). A good example of localizable strings is error messages that your application may display

to the user.

2. Rather than hard-coding anything, read from the embedded resources using a ResourceManager class.

3. Translate the resources, and take advantage of the .NET satellite assembly infrastructure to get the

correct set loaded in memory at run time. In other words, the ResourceManager automatically picks

the correct set of resources to load.

Creating Resource Files

Developers add .resx files to their projects (see Figure 16-4) and enter name/value pairs using a designer (see
Figure 16-5).

Figure 16-4. Adding a .resx file to a project

[View full size image]

Figure 16-5. Entering name/value pairs for the localizable resources

The value is the actual string to be translated, and the name is the key that is used in code to retrieve the value.
The first set of resources to be created is typically the fallback resources. That is, these are the resources that are
used by default when a resource for a chosen language does not exist.

In Microsoft Visual Studio 2005, the project already has a global .resx file included (and you can add ones if you
wish) that you can access in the project properties window (in Microsoft Visual Basic, it is located in My Project)
on the Resources tab. Select a .resx file in Solution Explorer, and then look at the file properties. Observe how its
Build Action is set to Embedded Resource, as shown in Figure 16-6.

Figure 16-6. .resx files are built as embedded resources

Earlier, we hard-coded the strings Sunday and Monday. Instead, you could create a name for each one and enter
it together with the value in a .resx file. For that particular example, note that there is a better solution because
the translation exists in the framework. Change the code as follows:

 private string FirstDayOfWeekToStringCorrect()

 {

 DateTimeFormatInfo dtfi = CultureInfo.CurrentCulture.DateTimeFormat;

 DayOfWeek dow = dtfi.FirstDayOfWeek;

 return dtfi.DayNames[(int)dow]; //DayNames returns localized strings

 }

Next we describe how to access the .resx values from code.

Reading from Resources

After all your strings are in one or more .resx files and out of the code, you must be able to access them
somehow. This is achieved by using a ResourceManager. Before Visual Studio 2005, you had to create the
ResourceManager manually and point it to the appropriate resource in its constructor. Subsequently, you would
call its methods (that is, GetString, GetObject) that accepted a name as a string parameter and returned the
localized result. This process is error prone because it is string-based and a single typo in the creation or retrieval
causes a run-time exception. With Visual Studio 2005, you get an easier programming model and compile-time
checking.

Behind every .resx file that you add, and indeed behind the default .resx file in the project properties window
(My Project, in Visual Basic), there is an auto-generated class that wraps the creation of the ResourceManager
and that exposes strongly typed properties for resources that were added to the .resx file by the designer. For
example, consider the following code, which uses hard-coded strings:

 label1.Text = "Day of week:";

 textBox1.Text = "Saturday";

Next, add to the project the .resx file shown earlier in Figure 16-5. Then you need to change the code to use the
resource file. In Visual Studio 2005, you can do this as follows:

 label1.Text = Resource1.label1;

 textBox1.Text = Resource1.saturday;

Note

Because you don't know at design time how long the translation for a piece of text
will be, it is best to place Label controls in their own horizontal space on the Form
and size them large enough so that they can accommodate the longest local
language translation you expect to need.

In the preceding code, Resource1 is a class that is generated by Visual Studio, and the static properties it
exposes also are generated for every name/value pair you add in the designer. It is good to look at the
auto-generated code to understand how the process works under the covers. To examine the code, in Solution
Explorer expand the .resx file node to reveal the code-behind file (in Visual Basic, select Show All Files first); see
Figure 16-7.

Figure 16-7. .resx files have an auto-generated class that helps access the resources at run time

The benefit of keeping the strings in one place is that if you need to change them later (because of branding or a
change in UI guidelines), it is easier. Also, having all text in one place makes it easier to spot inconsistencies in
terminology. However, the biggest benefit is that .NET supports swapping one set of resources for another in a
different language, with no changes to the code. We discuss how later, in the section "Locale-Specific Resources
and Satellite Assemblies."

Form's Localizable Property

If you select a form in Solution Explorer and examine the properties, you'll find two properties: Localizable and
Language. You may also notice that each form has an associated .resx file (in Visual Basic, show all files in
Solution Explorer to observe the .resx file). If you change the Localizable property to true and then select a
Language from the combo box, you'll notice that an additional .resx file is created. For example, setting the
language to French creates a Form1.fr.resx file, as shown in Figure 16-8.

Figure 16-8. Setting separate localizable resources for a form

The point here is that each form has its own .resx file. When you use Localizable for the form, a .resx file is
automatically created for each language you choose. Each .resx file persists not only the text but also the other
properties of the controls such as location and size. Note that you cannot have a different set of controls per
locale, and that is why you can add controls only when the Language property is set to Default. If you want to
have a slightly different set of controls for each culture, you can add all controls to the form and toggle their
Visible property as appropriate per culture. Always remember to switch back the Language to Default before
building or closing the project.

The benefit of the Localizable property is that each form is self-contained and you can design different layouts for
each locale you want to support. The disadvantage is that if you do not require different layouts for each
language, you pay a very small performance penalty at load time, especially for larger forms. Different needs
dictate different decisions, but, especially in a resource-constrained environment such as on a mobile device, it
may be better to explicitly use your own .resx files and leave the form's Localizable property set to False.

As stated in Chapter 5, "Understanding and Optimizing .NET Compact Framework Performance," always measure
the performance impact in your specific scenario before making such decisions. If you decide not to use the
Localizable property, it means that you do not enter any text into the properties of controls and instead set them
in the form's constructor (or in the form's Load event method handler) by reading from the resource class, as
discussed in the preceding section. The tradeoff is between a potential performance penalty and additional code
that you have to write yourself. Writing the code gives you the option to choose to store form resources in a
single file rather than have an individual .resx file for each form. If you store form resources in a single file, you
can use the same resource key/value pair across multiple forms, which translators may appreciate.

Locale-Specific Resources and Satellite Assemblies

At this stage, you have an application that has separated the localizable resources from the code. The next step
is to truly take advantage of that separation.

Each .resx file in your project that contains resources you'd like to localize requires a corresponding culture-
specific or culture-neutral .resx file. Culture-neutral resources are ones that apply to a language regardless of
location, for example, French. Culture-specific resources are those that apply to a specific language–location
combination, for example, French (Canada). For example, if you have a .resx file in your project called
Resources1.resx, you must add a resource file with the same file name but culture-specific extension for each
supported culture. So, for French, you could add a .resx file named Resources1.fr.resx to contain culture-neutral
resources for French, and you could further add a Resources1.fr-FR.resx file with resources that apply only to
French in France. The runtime will try to find the most specific resources to use. For every culture-specific entry
that is missing, it will fall back to the culture-neutral resources and for anything missing there, it will fall back to
the language-neutral resources that are embedded in the executable assembly (for example, Resources1.resx).

Note that .resx files that have a language's two-letter code in their name do not have a separate generated class
associated with them, of course.

Build the project after adding the language .resx files, and browse to your build directory, that is, browse to your
project's location, and then go to bin/Debug/. In addition to what you normally find there, you will see an
additional directory named fr. For every supported language in your project (for which you added a set of .resx
files) there will be a directory named after the two-letter language code. Open the fr folder, and you will find the
AppName.Resources.dll, where AppName is the name of the project. These culture-neutral and culture-specific
assemblies are called satellite assemblies. The language XML .resx files in a project are compiled into binary
satellite assemblies (Figure 16-9).

Figure 16-9. Satellite assemblies

When you deploy your solution to the user's device, you must re-create this directory hierarchy: Under the folder
where your executable is deployed, copy the language folders that contain the resources assembly for that
language. That means that even after your application is deployed, you can still make an additional deployment
step at a later stage without touching the original executable, and you can simply add language translation by
adding a directory containing a new satellite resource assembly.

Actually Translating the Text

Usually, you may require a third party to translate the text from one language to another. If the translator has
Visual Studio, that person can load the .resx files and translate the text by preserving the same key and
replacing the value with the localized text. Chances are that the translator will not have Visual Studio. Instead,
there are many third-party products that specialize in resource localization, for example, Alchemy Catalyst and
other free ones such as Lutz Roeder's Resourcer for .NET.

These tools can read the .resx format so that you need to send to your translators only the English .resx file, and
they will send you back a localized .resx file (for example, someName.es.resx for Spanish) that you can add to
your Visual Studio project and build the Resources.dll. This is where using the Localizable property of the form
mentioned earlier can be beneficial. Some of these tools can display the UI layout when they open the
FormX.resx file. This means that the translator can see the text in the context of a user interface. Note that this
is not possible with Visual Studio .NET 2003 and .NET Compact Framework version 1.0 projects because the
RESX format for device projects is different, so the tools cannot read that format and re-create the UI (although
they can still read the .resx file in a textual list format). In Visual Studio 2005 and .NET Compact Framework
version 2.0, the RESX format used for device projects and for desktop projects is identical, so that issue has gone
away.

Caution

In the software development kit (SDK), you can use the tool named Winres to
translate form .resx files as per the earlier description about the Localizable
property. Beware that it is not aware of device-specific .resx files, and although the
file format is the same now, there are still properties that are missing from device
controls such as RightToLeft. With Winres, you can assign such properties and you
will find out only with run-time exceptions. We suggest that you do not use Winres.

Should your translator not be willing or able to use the .resx files, the translator can still translate your content
by using text files. You can easily convert the .resx file to a text file and send that to the translator. The text file
for the .resx file in Figure 16-5 would contain the following two lines of text:

label1=Day of week:

saturday=Saturday

The translator opens the file that contains a series of key/value pairs separated by equal signs (=) and replaces
the text on the right with the localized text. The translator then sends back to you the text file, which you

convert back to the .resx format and rename accordingly (for example, someName.de.resx for German). The
question you probably have at this stage is how to convert the .resx file to text and vice versa. You can use the
SDK tool Resgen from the command line. (In previous versions where the .resx file format is different, you have
to use Cfresgen.) An example of what the command-line syntax looks like follows:

resgen Resource1.resx Resource1.txt

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

Writing software for the global marketplace is an ever more important requirement for large enterprises
operating in multiple countries, and for independent software vendors. In this chapter, we saw how code should
be written in a locale-independent way and how to isolate and then translate the locale-specific resources. You
can test localized applications even without having foreign devices because you can download localized images of
the emulators from MSDN.

This chapter has given you a brief introduction to this topic. For more information, please consult the online
documentation on the MSDN Web site at msdn2.microsoft.com/en-us/library/f45fce5x.aspx.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Chapter 17. Developing with Windows Mobile

In this chapter:

Pocket Outlook 565

State and Notifications 577

Pictures 580

GPS 582

Configuration 585

Telephony 586

Earlier Versions of Windows Mobile 586

The Microsoft Windows Mobile operating system contains a number of application programming interfaces (APIs)
that are exclusive to Windows Mobile–powered devices. Some we have already discussed in previous chapters,
for example, Connection Manager in Chapter 9, "Get Connected." Windows Mobile 5.0 and later feature a set of
managed APIs that can easily be used in both Microsoft .NET Compact Framework version 1.0 and version 2.0
projects. In this chapter, we investigate these managed APIs along with some of the native functionality that you
can also use in application development, such as the Global Positioning System (GPS) API.

Pocket Outlook

The Windows Mobile managed APIs include functionality for a number of different areas, but by far the most
complex and widely used is the Microsoft.WindowsMobile.PocketOutlook library, an easy-to-use managed class
library around two separate native APIs: the Microsoft Office Pocket Outlook Object Model (POOM), which is
responsible for Calendar, Contacts, and Tasks on the device, and Windows CE Mail API (CEMAPI), which handles
all e-mail and Short Message Service (SMS) functionality on the device. In Windows Mobile 5.0, this set of
functionality was renamed Outlook Mobile; however, the programming interface retains the Pocket Outlook name.
All activities using the Pocket Outlook functionality are based on the central OutlookSession class. Therefore, you
should create an instance somewhere central to your application, for example, as a member of the main
application form. The following sample application uses this approach: The session is initialized in the Form_Load
method.

using Microsoft.WindowsMobile.PocketOutlook;

namespace Chapter17
{
 public class OutlookForm : System.Windows.Forms.Form
 {
 private OutlookSession session;
...

Personal Information Management

The Pocket Outlook Object Model, the native API on which this managed class library is built, is designed as a
subset of the Outlook Object Model present in the desktop Microsoft Office Outlook application. With the Pocket
Outlook Object Model, you can access the Calendar, Contacts, and Tasks data held on the device; these are
referred to as Personal Information Management (PIM) items.

Because of the limitations of the applications on the device, the Pocket Outlook Object Model is notably missing a
number of features that an experienced Outlook developer is familiar with. For example, each type of data has
only a single folder, whereas Outlook supports a rich nested folder structure. There is no e-mail support in the
Pocket Outlook Object Model; e-mail is accessed by using a separate API, which we discuss later in this chapter
in the section titled "Messaging." All of the PIM data held on the device can be synchronized with Outlook on the
user's desktop computer or a Microsoft Exchange Server, depending on the synchronization settings applied.

PimItem

All individual PIM items are derived from the PimItem base class. This class defines standard functionality
supported by all item types such as the ability to display the item to the user with the ShowDialog() method and
the ability to copy and delete items. Each PimItem is uniquely identified by its ItemId property. Internally, the
ItemId contains a numerical ID assigned by the database engine on the device. These IDs do not persist across a
backup and restore and are not synchronized with desktop Outlook.

All of the properties in the PimItem-derived classes have accompanying events that fire if the property value is
changed. For example, the Body property, which contains the plain text notes for the item, has an accompanying
BodyChanged event. These events reflect only changes made in your own code—if the user modifies items in the
standard PIM applications or in a third-party application, the data in your application will not automatically
update. All items contain a Categories property, which is a string value containing the names of categories to
which the item is assigned. Internally, Pocket Outlook maintains a master categories list that is not exposed
through the managed class library.

Appointments

Windows Mobile supports both one-time and recurring appointments. You can create a new Appointment either
by using the AppointmentCollection.AddNew() method or the Appointment constructor. If you use the
Appointment constructor, you must call AppointmentCollection.Add() to add your new item to the calendar on
the device; otherwise, when you call Update() to save the item, an exception will be thrown. Strongly typed
collection classes are implemented for each of the item types, and these support a number of standard .NET
interfaces and with them you can easily data-bind controls to the PIM data. For example, the sample application
that accompanies this chapter displays all the Appointment data in a DataGrid control using just the following
code:

private void OutlookForm_Load(object sender, System.EventArgs e)
{
 //Create new Outlook application instance.
 session = new OutlookSession();
 dataGrid1.DataSource = session.Appointments.Items;
}

You can data-bind to controls just as you would with other collections or data sources. The Appointment class
offers a range of unique properties for setting the start and end times for the event. Appointments can be
marked as all-day events by setting the AllDayEvent property to true. This ignores the time component of the
Start and End properties, and it also affects the way the items are displayed in the Calendar application. All-day
events are always listed at the top of the day view and do not scroll out of view. Appointment behavior is also
affected by the BusyStatus property, which you can use to set the status to Free, Busy, Tentative, and Out Of
Office. Each status has a color key when the items are displayed in the Calendar application. Figure 17-1 shows a
few different types of appointment.

Figure 17-1. Calendar application showing different appointment types

Tasks

The Task item is used to store the user's to-do list. Tasks have properties for setting due date, completion status,
and priority. Other than the task-specific properties, working with tasks is the same as working with the other

item types. The DateCompleted and Complete properties are linked—because DateCompleted is read-only, the
value is set to the current time whenever the Complete property is set to true. Because tasks are synchronized
with the user's Outlook task list, they can be very useful for recording outstanding work from a mobile
application. The following code example shows how to create a Task item.

private void SaveTask(string customerid, int jobNumber, string description)
{
 Task t = new Task();
 t.Subject = jobNumber.ToString() + ": " + description;
 t.StartDate = DateTime.Now;
 //Set due date to 7 days.
 t.DueDate = DateTime.Today.AddDays(7);
 //Add custom properties.
 t.Properties.Add("CustomerId", typeof(string));
 t.Properties.Add("JobNumber", typeof(int));
 t.Properties["CustomerID"] = customerid;
 t.Properties["JobNumber"] = jobNumber;
 //Assign category.
 t.Categories = "Maintenance";

 t.Update();
}

Reminders

A reminder can be set for appointment and task items. The time of appointment reminders can be overridden
using the ReminderMinutesBeforeStart property. For task items, you set the ReminderTime property using the
exact DateTime value. You can also set the way in which the reminder behaves by using a number of Boolean
properties:

ReminderDialog

ReminderLED

ReminderRepeat

ReminderSound

ReminderVibrate

If the ReminderSound property is set to true, you can override the default reminder sound by passing the full
path of a .wav audio file to the ReminderSoundFile property. The following example shows how to create an
Appointment and set a reminder.

private void AppointmentWithReminder(DateTime start, TimeSpan duration,
 string subject)
{
 Appointment a = new Appointment();
 a.Start = start;
 a.Duration = duration;
 a.Subject = subject;
 a.BusyStatus = BusyStatus.Busy;
 a.Categories = "Samples";

 //Remind user one hour before start.
 a.ReminderMinutesBeforeStart = 60;
 a.ReminderDialog = true;
 a.ReminderLed = true;
 a.ReminderSound = true;
 a.ReminderRepeat = true;
 a.ReminderSoundFile = "\\Windows\\Alarm3.wav";

 a.Update();
}

Recurrence Patterns

Appointment and Task items can be created with a recurrence pattern. You must take some care in setting up
recurrence patterns because the Recurrence class has a number of properties, but their use depends on the
recurrence type set. Therefore, the RecurrenceType property is always the first property you should set when
creating a RecurrencePattern. Table 17-1 shows the possible values for RecurrenceType and the other Recurrence
properties that must be used with it.

Table 17-1. RecurrenceType and Recurrence Properties

RecurrenceType Value Recurrence Properties Property Type

NoRecurrence

Daily Interval Int32(Days)

Weekly DaysOfWeekMask DaysOfWeek

 Interval Int32(Weeks)

Monthly DayOfMonth Int32

 Interval Int32(Months)

MonthByNumber DaysOfWeekMask DaysOfWeek

 Instance WeekOfMonth

 Interval Int32(Months)

Yearly DayOfMonth Int32

 MonthOfYear Month

YearByNumber DaysOfWeekMask DaysOfWeek

 Instance WeekOfMonth

 MonthOfYear Month

The difference between the Monthly and MonthByNumber recurrence types (and the Yearly and YearByNumber
types) is that Monthly occurs on a specific date every n months, and MonthByNumber occurs on a specific
occurrence of a weekday every n months. A typical example of a MonthByNumber recurrence is "the second
Thursday of every month." Some of these enumerations look similar to .NET types, but they have different values
and behaviors. For example, because DaysOfWeek is a Flags enumeration, and multiple items can be combined
by using the OR operator, the values are not the same as System.DayOfWeek. Therefore, to convert between the
two requires some additional code that includes a switch statement:

private DaysOfWeek DayOfWeekToDaysOfWeek(DayOfWeek dow)
{
 switch (dow)
 {
 case DayOfWeek.Monday:
 return DaysOfWeek.Monday;
 case DayOfWeek.Tuesday:
 return DaysOfWeek.Tuesday;
 case DayOfWeek.Wednesday:
 return DaysOfWeek.Wednesday;
 case DayOfWeek.Thursday:
 return DaysOfWeek.Thursday;
 case DayOfWeek.Friday:
 return DaysOfWeek.Friday;
 case DayOfWeek.Saturday:
 return DaysOfWeek.Saturday;
 case DayOfWeek.Sunday:
 return DaysOfWeek.Sunday;
 }

 return 0;
}

The next enumeration of note is Month. This contains values for each of the 12 months, each of which has
numerical values 1 through 12. This means that you can cast a numerical month value to the enumeration and
vice versa. This is useful because the DateTime type exposes the month numerically, so you can convert this
easily to set up a recurrence:

ar.MonthOfYear = (Month)dtStart.Month;

The WeekOfMonth enumeration is used with the MonthByNumber and YearByNumber recurrence types. You can
determine the week value from any specific date by using the following code:

private WeekOfMonth GetWeekOfMonth(DateTime dt)
{

 int week = (dt.Day / 7) + 1;
 return (WeekOfMonth)week;
}

You can set up a simple recurrence pattern using a few lines of code:

private void RecurringAppointment(DateTime start, int occurrences)
{
 Appointment a = session.Appointments.Items.AddNew();
 a.Start = start;
 a.Duration = new TimeSpan(1,0,0);
 a.Subject = "Recurrence";

 AppointmentRecurrence ar = a.RecurrencePattern;
 ar.RecurrenceType = RecurrenceType.Daily;
 ar.Interval = 1;
 ar.Occurrences = occurrences;

 a.Update();
}

Contacts

Contact is another class derived from PimItem, and it contains properties to describe the various contact
methods for that item, including telephone numbers, e-mail addresses, and postal addresses. Each
communication type includes multiple properties so that a contact can contain both a HomeTelephoneNumber
and a BusinessTelephoneNumber, for example. As with the other PIM, the ContactCollection supports data
binding.

The display string used for a contact can be retrieved from the contact's FileAs property, which is automatically
generated based on the FirstName and LastName properties you provide, although you can manually change the
FileAs property if required. When you create a new contact, all fields are optional; however, you should at least
set the FileAs or the name properties. The following code shows how to add a new Contact item.

Contact c = session.Contacts.Items.AddNew();
c.FirstName = "Michael";
c.LastName = "Allen";
c.Email1Address = "michael@contoso.com";
c.MobileTelephoneNumber = "555-0132";
c.CompanyName = "Contoso Pharmaceuticals";
c.Update();

ChooseContactDialog

Unique to contacts is the functionality to display the list of contacts to the user so that the user can choose a
specific contact, such as is common when creating an e-mail message. The Microsoft.WindowsMobile.Forms
namespace includes a component specifically designed to address this—the ChooseContactDialog. This can be
used to select a specific contact, select a specific property of a contact, or select a combination of both. When
selecting contacts, you can also apply a restrict filter using the same syntax as used with the
ContactCollection.Restrict() method. With the RequiredProperties property, you can specify which properties
must be present on the items to be shown. For example, the user can choose not to show contact items that
have no e-mail address. Some special entries in the ContactProperty enumeration act as wildcards; for example,
ContactProperty.AllEmail is equivalent to combining the Email1Address, Email2Address, and Email3Address
properties. If the selected contact has more than one matching property, a second screen is shown to the user so
that the user can choose the specific property to use. The prompt on this screen is defined with the
ChoosePropertyText property. The following code example shows the ChooseContactDialog being used to select a
specific e-mail address:

ChooseContactDialog ccd = new ChooseContactDialog();
ccd.ChoosePropertyText = "Select an email address:";
ccd.ChooseContactOnly = false;
ccd.Owner = this;
ccd.Title = "Choose an email recipient";
ccd.RequiredProperties = new ContactProperty[] {
ContactProperty.AllEmail };

if (ccd.ShowDialog() == DialogResult.OK)
{
 txtEmailAddr.Text = ccd.SelectedPropertyValue;
}

In Windows Mobile 6, some additional properties are available, such as EnableGlobalAddressListLookup. This is a
Boolean property that when set to true allows the user to browse the Global Address List (GAL) as well as the
user's local contacts. Another useful addition is the NoUIOnSingleOrNoMatch property. When set to true, the
dialog box is not shown to the user if there is no possible choice or only one possible option. The
ChooseContactDialog dialog box has a look and feel just like the standard Contacts application, as illustrated in
Figure 17-2.

Figure 17-2. The ChooseContactDialog in action

Custom Properties

The standard properties available on the PIM items are sufficient for most uses but are, as expected, a subset of
those available in Outlook. You can add your own custom properties to items; however, these are not
synchronized and are not displayed in the standard Outlook Mobile dialog boxes for viewing and editing items.
Each type of PimItem has a specific set of strongly typed properties, and it also has the Properties collection,
which is of the type PimPropertySet. This collection allows you to access property values from their property
identifiers using the AppointmentProperty, ContactProperty, and TaskProperty enumerations. It also supports
retrieving properties by using their name, and it is this mechanism that is used to retrieve custom properties. A
custom property must first be added to the collection by using the Add method. It is not necessary to specify the
type of the property, in which case a string type will be used, but an additional override of the Add method
accepts a .NET type:

c.Properties.Add("LastInvoice", typeof(int));
c.Properties["LastInvoice"] = 3124;

Although Add takes a Type, custom properties can be of only a few specific types—anything else results in an
ArgumentException being thrown. The supported property types are the following:

Bool

Byte[]

DateTime

Double

Int16

Int32

UInt16

UInt32

String (default)

After you have added a custom property to a particular item, that property is available to the whole collection of
that item type. So, for example, you need to add the LastInvoice property only once to a contact, and then you
can directly set that property on any other contact. It is your responsibility to ensure that whatever value you
assign to the property matches the type used when creating the custom property; otherwise, an

ArgumentException will be thrown.

Messaging

The messaging system on Windows Mobile encompasses the e-mail and SMS functionality. The managed class
libraries give you the ability to send both e-mail and SMS messages and perform some basic automation of the
messaging application.

E-Mail

The EmailMessage class represents a single e-mail message and contains properties to set the recipients,
message contents, and file attachments. The managed APIs do not include functionality to read messages
already on the device, which would require Platform Invocation Services (PInvoke) around the CEMAPI
functionality or use of a third-party library such as Mobile In The Hand
(www.inthehand.com/WindowsMobile.aspx).

To send an e-mail message programmatically, first you must create a new instance of EmailMessage. The To
property contains a RecipientCollection that represents one or more recipients for the message. The
EmailMessage class also contains collections of carbon copy (CC) and blind carbon copy (BCC) recipients. A
Recipient object is created using either just an e-mail address or a display name and an e-mail address.

The message contains string properties to set the subject line and the message body. You can set some
additional properties on the message, including the Importance (High, Low, or Normal) and Sensitivity (Private,
Confidential, Personal, and Normal). The message also contains an Attachments property. This is an
AttachmentCollection that can be used to attach files to the message. An Attachment contains a single property
that is the full path to the file. The file must exist at this location or an ArgumentException will be thrown. The
following code sample shows a complete example of creating an e-mail message, populating the recipients,
creating the message contents, and adding a file attachment:

private void SendGenericEmail()
{
 EmailMessage m = new EmailMessage();

 Recipient r = new Recipient("Elisabetta Scotti",
 "elisabetta@fourthcoffee.com");
 m.To.Add(r);

 m.Subject = "Important customer update";

m.BodyText = "This is an automatically generated email";
m.Importance = Importance.High;

Attachment a = new Attachment(openFileDialog1.FileName);
m.Attachments.Add(a);

m.Send(session.EmailAccounts[0]);
}

Sending and Receiving

The default behavior for the messaging application is for messages to be placed in the Outbox until the e-mail
account is explicitly synchronized by the user. This gives the user complete control over when to establish a
network connection for exchanging this data. You can programmatically force a send and receive operation on the
user's behalf by using the MessagingApplication.Synchronize method. There are a couple of overloads for this
method, the default of which takes no arguments and performs a send and receive on the currently active e-mail
account. The two other overloads take either an EmailAccount argument or a string that contains the name of the
account. The synchronization occurs asynchronously, and there is no way to determine whether the operation
was successful or when it completed. The sample application has a Sync button that calls the following code:

private void btnSync_Click(object sender, EventArgs e)
{
 // send/receive default account
 MessagingApplication.Synchronize(session.EmailAccounts[0]);
}

Composing a New Message

Rather than build a message in your own code, you may prefer to present the user with the standard new
message dialog box. With the MessagingApplication.DisplayComposeForm method, you can do this. This method
is very flexible because it features numerous overloads so that you can prepopulate the form before showing it to
the user and specify which e-mail account to use. The sample application includes a Compose button that calls
this method, passing in the recipient address, subject and body, and a file attachment:

private void btnCompose_Click(object sender, EventArgs e)
{

 string[] attachments = new string[] { };

 if (File.Exists(openFileDialog1.FileName))
 {
 attachments = new string[] { openFileDialog1.FileName };
 }
 MessagingApplication.DisplayComposeForm(
 session.EmailAccounts[0].Name, txtEmailAddr.Text,
 "Populated Compose Form", txtBody.Text, attachments);
}

The resulting screen is shown in Figure 17-3.

Figure 17-3. Compose E-Mail dialog box

SMS

The SmsMessage type is similar to its e-mail equivalent, and both are derived from the base Message class.
Because SMS is a simpler messaging system, it has fewer properties than e-mail does. The other big difference is
that SMS messages are always sent immediately (subject to cellular network coverage) rather than being placed
in the Outbox until a connection is made. An individual SMS message is 160 characters long; however, you can
work around this limitation by splitting a long message across multiple SMS messages. The messages are then
reassembled on the receiving device. Because each 160-character message is billed as a separate message, and
because many mobile phones don't have user interfaces suited to reading long text content, you should keep
SMS messages concise.

You can send an SMS message to multiple recipients by passing several Recipient objects to the To collection;
however, these are sent internally as separate messages and therefore each copy is billed as a separate
message. You can optionally request a delivery report for the message that will be received in the SMS Inbox
when the recipient device acknowledges receipt of the message. Because SMS is a store-and-forward
mechanism, a message can take some time to get to its destination based on network traffic levels and the
recipient's cellular coverage. The operations to send a single SMS message are shown in the following code
example:

private void SendGenericSms()
{
 SmsMessage s = new SmsMessage();

 Recipient r = new Recipient("Andrey Gladkikh", "555-0171");
 s.To.Add(r);

 s.Body = "This is an automatically generated SMS";
 s.RequestDeliveryReport = true;

 s.Send();
}

Chapter 9 discusses the SMS interception functionality in the
Microsoft.WindowsMobile.PocketOutlook.MessageInterception namespace. You can use SMS send functionality
described in this chapter to work in conjunction with a MessageInterceptor on another device, for example, for
peer-to-peer data transfer. Simply ensure that the message you send matches the rule you specified in the
MessageInterceptor instance.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

State and Notifications

Windows Mobile 5.0 introduces a centralized API for querying device settings and raising events when these
settings change. This is known as the State and Notifications Broker and is available to both native code and
managed code projects through the Microsoft.WindowsMobile.Status namespace. The settings are held in the
system registry, and thanks to new functionality in Windows CE 5.0 the system is capable of providing events
when certain registry values change. The SystemState class is the central point for the State and Notifications
Broker. It features static properties you can use to quickly access all of the available system properties. For
example, you can retrieve the cellular phone signal strength by using a single line of code:

int signal = SystemState.PhoneSignalStrength;

The SystemProperty enumeration contains all the properties available from the API. These include properties
related to the network connectivity, hardware configuration, and phone hardware on the device. Windows Mobile
6 extends this list of properties to include WiFi, Bluetooth, and more detailed cellular phone properties. The
ability to retrieve system property values is only one part of the API; you can also write code so that you can be
notified when any of these properties change. This is very powerful because in previous versions of the platform
you must work with a number of different low-level native APIs to get change information in the power
management and telephony subsystems. To start monitoring a particular property you must create an instance of
SystemState. Each instance can monitor only a single property.

In the example code for this section, we look at two ways of monitoring a property. The first is to use the
SystemState class to monitor the property for the lifetime of your application, and the second is to set up an
application launcher registration so that your application is launched when a property changes.

The standard constructor for SystemState takes a SystemProperty member to define which property to monitor.
In the example, you monitor the battery level by using PowerBatteryStrength. In the Form_Load method, you
create the SystemState instance and add a handler for the Changed event:

private void Form1_Load(object sender, EventArgs e)
{
 batteryState = new SystemState(SystemProperty.PowerBatteryStrength);
 batteryState.Changed += new ChangeEventHandler(batteryState_Changed);
 UpdateBatteryStrength(SystemState.PowerBatteryStrength);
}

UpdateBatteryStrength is a helper method you can create to update a progress bar and colored panel on the form
to reflect the current battery level. You call it here to set the initial values; it will be called again whenever the
Changed event is raised.

Different property values have different data types. The PowerBatteryStrength uses the BatteryLevel
enumeration, so UpdateBatteryStrength checks the value and sets an appropriate value for the progress bar to
show a rudimentary battery meter:

void UpdateBatteryStrength(BatteryLevel newLevel)
{
 switch (newLevel)
 {
 case BatteryLevel.VeryHigh:
 pnlPower.BackColor = Color.Green;
 pbBattery.Value = 100;
 break;
 case BatteryLevel.High:
 pnlPower.BackColor = Color.LimeGreen;
 pbBattery.Value = 75;
 break;
 case BatteryLevel.Medium:
 pnlPower.BackColor = Color.Yellow;
 pbBattery.Value = 50;

 break;
 case BatteryLevel.Low:
 pnlPower.BackColor = Color.Orange;
 pbBattery.Value = 25;
 break;
 case BatteryLevel.VeryLow:
 pnlPower.BackColor = Color.Red;
 pbBattery.Value = 0;
 break;
 }
}

After you have created this helper function, writing the code required in the Changed event handler is fairly
simple. The only complication is that the ChangeEventArgs passed to the event handler contains a NewValue
property that is the raw value as retrieved from the registry. Because the registry supports only a small number
of data types, the registry values will not be what you would expect from the SystemState static properties. For
example, Boolean properties are stored as DWORD values (4-byte integers) in the registry, with nonzero
representing true. If you do not want the complication of converting the value to the correct type, you can ignore
ChangeEventArgs and retrieve the value from the appropriate SystemState property. The BatteryLevel value is
stored as a DWORD with the numerical value of the enumeration member. In this case, you can cast the value to
the BatteryLevel type:

void batteryState_Changed(object sender, ChangeEventArgs args)
{
UpdateBatteryStrength((BatteryLevel)args.NewValue);
}

When this code is implemented, you can see the progress bar and the panel color changes when the device
battery transitions between the various BatteryLevel steps. As mentioned previously, you can register your
application to be started when a particular property changes. You do this by using the members of the
IApplicationLauncher interface, which is also exposed by the MessageInterceptor class described in Chapter 9.
You can use an application launch ID to uniquely identify your registration and details of the property, and your
application .exe file is stored in the registry so that it can be started if the property changes.

An attempt to use the same application launch ID as one that is already registered results in an exception, so
you should always check with the IsApplicationLauncherEnabled method before registering. A specific overload of
the SystemState constructor takes an existing application launch ID. The sample code checks for an existing
registration; if present, you can use the existing ID, and if not, you set up a new SystemState for the required
property, and then call EnableApplicationLauncher. The code to set up your registration will always follow this
pattern:

if(SystemState.IsApplicationLauncherEnabled("Chapter17.Cradle"))
{
 cradleState = new SystemState("Chapter17.Cradle");
}
else
{
 cradleState = new SystemState(SystemProperty.CradlePresent);
 cradleState.EnableApplicationLauncher("Chapter17.Cradle");
}

cradleState.Changed+=new ChangeEventHandler(cradleState_Changed);

The only limitation with this notification mechanism is that your application will be launched every time the
property changes, and not just when it changes to a specific value. For example, you may want your application
to start only when the device is placed in the cradle, not when it is removed from the cradle. The only
workaround here is to check the value in your code and close the application if the current value isn't the
required state. If you are going to do this, you should check the state as early as possible in your application
code so that you can close the application quickly with as little disruption to the user as possible. The earliest
opportunity would be to place the code in your Main method:

static class Program
{
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [MTAThread]
 static void Main()
 {
 if (SystemState.CradlePresent)
 {
 Application.Run(new Form1());

 }
 }
}

As you have seen, the State and Notifications Broker is a very powerful set of functionality. It can make your life
much easier by placing system properties in a single location where properties can be queried and notifications
set up using relatively little code.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Pictures

The Microsoft.WindowsMobile.Forms namespace contains two components for working with pictures:
SelectPictureDialog provides an alternative to the traditional OpenFileDialog by displaying images using
thumbnails. This makes it much easier to work with image files because you can see what you are choosing
rather than just picking by the file name alone. Figure 17-4 shows the standard appearance of the
SelectPictureDialog.

Figure 17-4. The SelectPictureDialog

Using the default settings, you can open the dialog box by using just a couple of lines of code. If the device has a
built-in camera, the first item in the list on the picker will be a link to the camera application. You can customize
this behavior by disabling access to the camera by setting CameraAccess to false. You can also add your own title
to the dialog box by using the Title property. You can toggle whether distributed rights management (DRM)
content is displayed to the user. One of the properties of this dialog box, LockDirectory, is documented as being
able to block the user from browsing outside the InitialDirectory you specify; in actual fact, this property is not
implemented, and the user will still be able to browse outside the initial directory. The following example shows
how to set up and display the SelectPictureDialog:

private void mnuChoose_Click(object sender, EventArgs e)

{

 SelectPictureDialog spd = new SelectPictureDialog();

 spd.Owner = this;

 spd.Title = "Select a picture";

 spd.CameraAccess = false;

 spd.LockDirectory = true;

 if (spd.ShowDialog() == DialogResult.OK)

 {

 pbImage.Image = new Bitmap(spd.FileName);

 }

}

Camera

As well as providing a method to select a picture already on the device, you can programmatically invoke the
camera to add picture-taking functionality to your application. The CameraCaptureDialog provides a simple
interface over the platform's camera support. The API is consistent across all Windows Mobile–powered devices,
even though each manufacturer is responsible for implementing the camera functionality and user interface. For
this reason, the actual camera dialog box can vary between different devices. Figure 17-5 shows an example of
the CameraCaptureDialog in use.

Figure 17-5. The CameraCaptureDialog

The dialog box can be set to still image or video mode, and you can specify a preferred resolution for the output,
although device capabilities can vary. The following code example shows how to invoke the camera dialog box:

private void mnuCapture_Click(object sender, EventArgs e)

{

 CameraCaptureDialog ccd = new CameraCaptureDialog();

 ccd.Mode = CameraCaptureMode.Still;

 ccd.StillQuality = CameraCaptureStillQuality.High;

 ccd.Title = "Say Cheese";

 if (ccd.ShowDialog() == DialogResult.OK)

 {

 pbImage.Image = new Bitmap(ccd.FileName);

 }

}

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

GPS

All consumer GPS receivers output data over a serial port in a text format devised by the National Marine
Electronics Association (NMEA). Prior to Windows Mobile 5.0, you needed to establish a connection to the
attached device by a serial port, or a virtual serial port for devices connected by Bluetooth, to receive incoming
NMEA data, and then parse it yourself. Windows Mobile introduces a centralized GPS service that the user can
configure through the Settings menu on the device. Because only the system is connected directly to the GPS
device, with this approach multiple applications can access the same GPS data at once through a virtual COM
port or a set of API methods.

Unfortunately, the managed APIs for Windows Mobile don't include support for the new GPS API, but sample
code is shipped with the Windows Mobile software development kit (SDK). The sample code for this chapter on
the book's companion Web site contains a modified version optimized for version 2.0 of the Compact Framework.
The code can be simplified by using the EventWaitHandle class created in Chapter 14, "Interoperating with the
Platform," and by taking advantage of improved platform interop support for complex structures in .NET Compact
Framework 2.0. The definition of the GPS_POSITION structure is simplified to the following:

[StructLayout(LayoutKind.Sequential)]
internal struct GPS_POSITION
{
 private const int GPS_MAX_SATELLITES = 12;

 public int dwVersion;
 public int dwSize;
 public GPS_VALID dwValidFields;
 public GPS_DATA_FLAGS dwFlags;
 public SYSTEMTIME stUTCTime;
 public double dblLatitude;
 public double dblLongitude;
 public float flSpeed;
 public float flHeading;
 public double dblMagneticVariation;
 public float flAltitudeWRTSeaLevel;
 public float flAltitudeWRTEllipsoid;
 public FixQuality FixQuality;
 public FixType FixType;
 public FixSelection SelectionType;
 public float flPositionDilutionOfPrecision;
 public float flHorizontalDilutionOfPrecision;
 public float flVerticalDilutionOfPrecision;
 public int dwSatelliteCount;
 [MarshalAs(UnmanagedType.ByValArray, SizeConst = GPS_MAX_SATELLITES)]
 public int[] rgdwSatellitesUsedPRNs;
 public int dwSatellitesInView;
 [MarshalAs(UnmanagedType.ByValArray, SizeConst = GPS_MAX_SATELLITES)]
 public int[] rgdwSatellitesInViewPRNs;
 [MarshalAs(UnmanagedType.ByValArray, SizeConst = GPS_MAX_SATELLITES)]
 public int[] rgdwSatellitesInViewElevation;
 [MarshalAs(UnmanagedType.ByValArray, SizeConst = GPS_MAX_SATELLITES)]
 public int[] rgdwSatellitesInViewAzimuth;
 [MarshalAs(UnmanagedType.ByValArray, SizeConst = GPS_MAX_SATELLITES)]
 public int[] rgdwSatellitesInViewSignalToNoiseRatio;
}

This is now passed by reference to the GPSGetPosition method, which is defined as follows:

[DllImport("gpsapi.dll")]
Private static extern int GPSGetPosition(IntPtr hGPSDevice,
ref GPS_POSITION pGPSPosition, int dwMaximumAge, int dwFlags);

The GetPosition method that calls this method and returns the GpsPosition object is defined as follows:

public GpsPosition GetPosition(TimeSpan maxAge)
{
 if (Opened)
 {
 GPS_POSITION position = new GPS_POSITION();
 position.dwVersion = 1;
 position.dwSize = Marshal.SizeOf(typeof(GPS_POSITION));

 // Call native method passing in your native struct.
 int result = GPSGetPosition(gpsHandle, ref position, 500000, 0);
 if (result == 0)
 {
 // Native call succeeded; create managed wrapper class.
 GpsPosition gp = new GpsPosition(position);

 if (maxAge != TimeSpan.Zero)
 {
 // Check to see if the data is recent enough.
 if (!gp.TimeValid || DateTime.Now - maxAge > gp.Time)
 {
 return null;
 }
 }

 return gp;
 }
 }
 return null;
}

Externally, the Gps class is kept consistent so that you can use it in the same way as the original sample version.
Because the events raised by this object initiate from a background worker thread, you must not update any user
interface elements directly from an event handler. Instead, you must use Invoke to call a method on the user
interface thread. In the following example, when the LocationChanged event occurs, the OnLocationChanged
method is called on the user interface thread and the current location is displayed on a StatusBar control.

private void Form1_Load(object sender, EventArgs e)
{
 gps.DeviceStateChanged += new
 DeviceStateChangedEventHandler(gps_DeviceStateChanged);
 gps.LocationChanged += new
 LocationChangedEventHandler(gps_LocationChanged);
 gps.Open();
}

void gps_LocationChanged(object sender, LocationChangedEventArgs args)
{
 //Invoke your handler on the UI thread.
 this.Invoke(new LocationChangedEventHandler(OnLocationChanged),
 new object[] { sender, args });
}

void OnLocationChanged(object sender, LocationChangedEventArgs args)
{
 statusBar1.Text = "Lat/Lon: " + args.Position.Latitude.ToString("f5") +
 ", " + args.Position.Longitude.ToString("f5");
}

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Configuration

Windows Mobile supports an Extensible Markup Language (XML) configuration subsystem that you can use in a
variety of ways, from operator-provisioned over the air (OTA) settings to deployment packages to calling
configuration APIs to register settings programmatically. The platform consists of a range of configuration service
providers, each responsible for a particular group of settings. It is beyond the scope of this book to describe each
of the providers, and the reader should consult the Windows Mobile SDK documentation online for a full reference
(msdn2.microsoft.com/en-us/library/ms889540.aspx).

Configuring the Device Programmatically

The Microsoft.WindowsMobile.Configuration assembly provides two methods for testing and processing
configuration documents. The Configuration sample application contains code to load an XML file containing the
basic settings for a General Packet Radio System (GPRS) network connection and to process it on the device. The
document is loaded into an XmlDocument instance and passed to the ProcessConfigXml method.

private void btnGPRS_Click(object sender, EventArgs e)

{

 System.Xml.XmlDocument d = new System.Xml.XmlDocument();

 d.Load(Assembly.GetExecutingAssembly().GetManifestResourceStream(

 "Chapter17.GprsSettings.xml"));

 System.Xml.XmlDocument d2 = ConfigurationManager.ProcessConfiguration(

 d, true);

 MessageBox.Show(d2.OuterXml);

}

Deploying Configuration Settings

When deploying applications to Windows Mobile–powered devices, you can also build installer packages from XML
provisioning documents. These compiled files have the .cpf file type and are started in a way similar to how .cab
files are started, as described in Chapter 6, "Completing the Application: Packaging and Deployment." You
cannot build a .cpf file in Microsoft Visual Studio. Instead you must resort to the MakeCab.exe command-line
utility, which is installed with Visual Studio 2005 and later in the SmartDevices\SDK\SDKTools folder beneath
your Visual Studio installation. The setup XML file you create must be named _setup.xml. You create a .cpf file by
passing MakeCab.exe the XML file you have created and specifying the output file name:

makecab.exe _setup.xml MySettings.cpf

More detail on the MakeCab.exe tool can be found in an article titled "Creating a .cpf file" on the Microsoft MSDN
Web site at 58.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Telephony

The Telephony namespace contains functionality for programmatically establishing a voice call. This is discussed
in Chapter 9 in the section titled "Voice Calls."

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Earlier Versions of Windows Mobile

On devices running versions of Windows Mobile earlier than version 5.0, these managed class libraries are not
available. To include some of the functionality, you can PInvoke the native APIs or use a third-party wrapper.
Mobile In The Hand (www.inthehand.com/WindowsMobile.aspx) provides a subset of the Windows Mobile 5.0
managed APIs that works on devices running Windows Mobile 2003 and later. This library can make it easier to
write a single set of code across a wider range of devices. A free community edition that provides the basic
functionality from the Configuration, PocketOutlook, Status, and Telephony namespaces is available.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

In this chapter, we investigated the functionality available when specifically targeting Windows Mobile–powered
devices. Although the underlying Windows CE operating system is modular and can vary greatly between
different device types, the Windows Mobile platform provides a tightly defined set of APIs that you know will be
present across the range of Windows Mobile–powered devices. Windows Mobile 5.0 introduces some powerful
managed class libraries to simplify development on the platform.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Part III: New Developments

In this part:

Chapter 18: Introducing .NET Compact Framework Version 3.5 and Visual
Studio Code Name "Orcas."

Chapter 18. Introducing .NET Compact Framework Version
3.5 and Visual Studio Code Name "Orcas"

In this chapter:

Introducing .NET Compact Framework 3.5 590

Introducing Visual Studio Code Name "Orcas" 593

Developing Applications with .NET Compact Framework 3.5 595

Unit Testing in Visual Studio Code Name "Orcas" Team System 619

Microsoft .NET Compact Framework version 2.0—with which the bulk of this book is concerned—was released as
part of the Microsoft Visual Studio 2005 product at the end of 2005. At the time of this writing, Microsoft is
gearing up to release the next version of these products. The code name for the next version of Visual Studio is
"Orcas," and included in "Orcas" will be .NET Compact Framework version 3.5, the follow-up to version 2.0. There
never was and never will be a version 3.0 of the .NET Compact Framework because Microsoft keeps version
numbering in sync with the full .NET Framework, which also reaches version 3.5 in Visual Studio "Orcas." (.NET
Framework version 3.0 was released in late 2006 around the same time the Windows Vista operating system was
released, and it included the first releases—for the full .NET Framework only—of the Microsoft Windows
Communication Foundation [WCF], Windows Presentation Foundation [WPF], Windows Workflow Foundation
[WF], and Windows CardSpace.)

In this chapter, we introduce the new features of .NET Compact Framework 3.5 and describe the new tools for
mobile application developers included in Visual Studio "Orcas."

Important

The new features described in this chapter are based on the beta 1 release of Visual
Studio "Orcas." We can make no guarantee that the features described will be
present in the final released product or will operate as described, and we can't
guarantee that the code samples included in this chapter will compile and run using
the final released product. However, we will ensure that updated information is
available on this book's companion Web site.

Introducing .NET Compact Framework 3.5

The new version of the .NET Compact Framework runtime is supported on exactly the same platforms as v2.0:
Pocket PC 2003 and later, smartphones running Microsoft Windows Mobile 2005 and later, and embedded
hardware running Windows CE 4.2 and later. As with earlier versions of the .NET Compact Framework, you can
install version 3.5 to run alongside earlier versions of the runtime.

.NET Compact Framework 3.5 includes many additions that make it more compatible with corresponding
functionality in the full .NET Framework. Some exciting new features, including the following, address particular
challenges mobile application developers face:

Compact Windows Communication Foundation (Compact WCF) allows mobile applications to interact with

WCF services. Compact WCF supports Hypertext Transfer Protocol (HTTP) as a message transport, but the
most innovative feature is support for e-mail as a transport so that you can use a Microsoft Exchange
Server as a store-and-forward transport for messaging over unreliable networks. See the section titled
"Programming Compact WCF" later in this chapter for more information.

The System.IO.Compression namespace, which includes the DeflateStream and GZipStream classes,
allows easy compression of data using royalty-free compression algorithms. You can also use these classes
with HTTP requests, such as when calling Web services, to reduce costs associated with transferring data
over public networks such as with data calls over phone networks using General Packet Radio Service
(GPRS) or Code-Division Multiple Access (CDMA). See the section titled "Programming
System.IO.Compression" later in this chapter for more information.

Compact Language Integrated Query (LINQ) supports a subset of LINQ Standard Query Operators that
you can use to query in-memory objects, DataSet objects, and Extensible Markup Language (XML). You
cannot, however, make direct queries to data in Microsoft SQL Server 2005 or SQL Server 2005 Compact
Edition. See the section titled "Programming Language Integrated Query" later in this chapter for more
information.

The System.Media namespace is supported, including support for SoundPlayer using WaveOut, which
allows multiple sounds to play at once, and support for SystemSound and SystemSounds.

Client certificates are supported to authenticate Web Service calls and calls with
System.Net.HttpWebRequest. To use client certificates for authentication, you install the certificate on the
device, create a System.Security.Cryptography.Certificates.X509Certificate specifying the name of the
installed certificate, and then add the certificate object to the ClientCertificates property of the
WebRequest or your Web service proxy using code such as
myWebRequest.ClientCertificates.Add(mycertificate);.

The new SystemSettings.WinCEPlatform property in the Microsoft.WindowsCE.Forms namespace helps you
easily distinguish Smartphone, Pocket PC, and embedded solutions and makes it easier for developers to
build software to run on all these platforms. The property returns an enumeration that has values
WinCEGeneric, PocketPC, or Smartphone according to the platform the application is currently running on.

Numerous application programming interface (API) additions implement features that are available in the
full .NET Framework 2.0 and that are now included in version 3.5 to make the full and compact
frameworks more compatible. These include not only the System.IO.Compression and System.Media
namespaces mentioned earlier, but also the following:

System.Threading.EventWaitHandle.

System.Diagnostics.Stopwatch.

Support for the Resize method of the Array class, plus the addition of some new Sort method
overloads.

System.Runtime.CompilerServices.CompilerGeneratedAttribute.

System.Runtime.Serialization.SerializationException.

System.Text.StringBuilder, which gets a new overload for the AppendFormat method and also both
overloads of the AppendLine method.

System.Threading.Thread.MemoryBarrier method.

Support for String.Contains.

Addition of a public Dispose method to many classes, including GraphicsStream, FileStream,
MemoryStream, StreamReader, StreamWriter, StringReader, StringWriter, TextReader, and
TextWriter.

System.IO.InvalidDataException and a new enum System.Net.DecompressionMethods that is the
type of the new property AutomaticDecompression on the HttpWebRequest class, which support
the addition of the System.IO.Compression namespace already mentioned earlier (see the section
titled "Programming System.IO.Compression" later in this chapter).

Support for two classes in the System.ComponentModel namespace: AsyncCompletedEventArgs
and AsyncCompletedEventHandler.

Support for System.Diagnostics. TraceListener so that you can implement your own class that
inherits from TraceListener to implement run-time logging by calls to Trace.* methods. You can
direct the output to the destination of your choice by using the custom TraceListener. There is also
support for TextWriterTraceListener, which redirects trace and debug output to a TextWriter or to a
Stream such as FileStream.

Four overloads for each of the methods Write, WriteIf, WriteLine, and WriteLineIf in the
System.Diagnostics.Trace class (in version 2.0, the Trace class supports only the Assert method for
output of tracing diagnostics). It also gets the Fail, Flush, and Close methods.

Debugging enhancements, including the following:

Support for nested func-evals. (A func-eval is a function evaluator or property evaluator that Visual
Studio uses when you evaluate functions and get properties when stopped at a breakpoint; a
func-eval is also used by visualizers, such as the DataSet visualizer.)

Stack trace enhancements.

Provision for log files to be read at run time. See Chapter 4, "Catching Errors, Testing, and
Debugging," for details about how to turn on logging. In .NET Compact Framework 2.0, log files are
locked at run time so that you can read the file only when the program stops execution, but this
restriction is removed in version 3.5.

Enhanced logging for interop functionality with native code.

Improved logging of finalizer activities to enhance product supportability.

Support for strong-name keys that are greater than 1,024 bytes in length.

Support for performing runtime version redirection for all applications on the device by placing an
app.config file in the Windows folder. In .NET Compact Framework 2.0, you can create a .config file called
{myapplication}.exe.config and place it in the application folder. You can use this technique to cause an
application that was compiled against an earlier version of the runtime to run instead using a later version
that you have installed on the device. If you do not use this technique, and the version that your
application was compiled against is still installed on the device, the default behavior is for the application
to run using the same version it was compiled against.

In version 3.5, you can create a .config file called device.config and place it in the Windows folder to
perform run-time redirection for every application on the device. For example, to redirect all applications
to run using the version 3.5 runtime, place a device.config file containing the following in the Windows
folder (replace v3.5.xxxx with the correct version number when version 3.5 is finally released):

 <configuration>

 <startup>

 <supportedRuntime version="v3.5.xxxx"/>

 </startup>

 </configuration>

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Introducing Visual Studio Code Name "Orcas"

In addition to the new items included in the .NET Compact Framework runtime and libraries, Visual Studio
"Orcas" introduces new tools designed to help the mobile application developer. Note that although these tools
are included in Visual Studio Code Name "Orcas" beta 1, in future releases some or all of the tools for mobile
device application development may be distributed as a separate download.

In Visual Studio Team Developer Edition and Visual Studio Team Suite, you can generate and run unit
tests from within the Visual Studio Integrated Development Environment (IDE).

The Remote Performance Monitor (first released with .NET Compact Framework 2.0 Service Pack 1 [SP1])
is included in "Orcas" and installs run-time components on the device automatically, in comparison with
the manual installation process required by earlier versions, as explained in Chapter 5, "Understanding
and Optimizing .NET Compact Framework Performance."

The Remote Performance Monitor in version 2.0 includes menu options to activate and disable network,
loader, and native interop logging. In version 3.5, these options are moved into a separate tool, the
Device Logging Configuration tool.

The Remote Performance Monitor gains a new feature that you can use to take several snapshots of the
common language runtime (CLR) heap and then analyze object allocation trends using those snapshots.
(This feature was actually first introduced in the tools update shipped as part of Compact Framework 2.0
SP2.) This feature can be very helpful in diagnosing the cause of memory leaks. In managed code, a
memory leak occurs when you believe you have removed references to objects, but the objects cannot be
collected by the garbage collector because there is still a well-concealed reference to them somewhere in
your object tree. The heap snapshot feature of the Remote Performance Monitor helps you track down the
cause of problems such as this. For more information, see Steven Pratschner's Weblog at
blogs.msdn.com/stevenpr/archive/2007/03/08/finding-managed-memory-leaks-using-the-net-cf-remote-
performance-monitor.aspx.

The CLR Heap Profiler tool from the full .NET Framework software development kit (SDK) is ported to
operate with the .NET Compact Framework. With this useful tool, you can analyze object allocations over
time, identify where objects are being created in your code, and identify memory allocation by object
type.

The Device Security Manager PowerToy for Windows Mobile 5.0 mentioned in Chapter 10, "Security
Programming for Mobile Applications," is included in "Orcas" on the Tools menu as the Device Security
Manager.

Device Emulator 3.0 includes a number of new features, including the ability to automate/script
interaction with the emulators through a Component Object Model (COM) API. It also includes the
enhancements introduced in version 2.0 of the Device Emulator, such as the ability to simulate
low-battery scenarios.

The New Project Wizard has been redesigned for mobile applications. In the New Project dialog box, a
single option called Smart Device Project for mobile device projects is available. When you select that
option, the New Project Wizard for mobile applications starts, as shown in Figure 18-1.

Figure 18-1. New Project Wizard for mobile applications

[View full size image]

Note

Late in 2007, another exciting new technology will come out: the Microsoft
Synchronization Services for ADO.NET, which is a new, easy-to-use programming
model for synchronizing data between a client database, such as SQL Server 2005
Compact Edition on a mobile device, and another database on a server, such as SQL
Server 2005. We do not discuss Synchronization Services for ADO.NET in this
chapter because the tool support for using it with mobile device applications didn't
make it into the "Orcas" release but instead will be released separately later.
Synchronization Services for ADO.NET has the potential to replace Remote Data
Access (covered in Chapter 7, "Exchanging Data with Backend Servers") because it
is easier to configure and use. For more information, download "Microsoft
Synchronization Services for ADO.NET Books Online Community Technology
Preview" from the Microsoft Download Center Web site at go.microsoft.com/fwlink
/?LinkId=80742.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Developing Applications with .NET Compact Framework 3.5

In this section, we take a more in-depth look at some of the more exciting additions to the Compact Framework
introduced in version 3.5.

Programming Compact WCF

The Windows Communication Foundation (WCF) for desktop computers and servers was released in .NET
Framework 3.0 late in 2006. WCF (formerly known as Indigo) is the new unified messaging framework that
provides developers with a single, consistent, easy-to-use programming model for building messaging in
distributed applications. It provides a framework for working with the different messaging techniques in use to
date, such as Web Services, Microsoft Message Queuing (MSMQ), and .NET Remoting. Instead of the different
and varied APIs each of these techniques requires, programmers must learn only a single API. Also, the
framework is easily extensible to support new message transports. It unifies both messaging style and Remote
Procedure Call (RPC) style and can use both binary protocols and Simple Object Access Protocol (SOAP)–based
XML protocols at the message transport level.

.NET Compact Framework 3.5 includes a subset of WCF called Compact WCF. Compact WCF allows applications
on mobile devices to interoperate with WCF services on desktop computers and servers. There is no support for
hosting WCF services on a device, so your device application is always a client requesting the services of a
service running on a desktop computer or server. Compact WCF offers two different predefined bindings (a
binding is a defined set of characteristics, such as the protocol used to transfer the message, the kind of security
and transactional support available, and the message formatting and encoding supported), the first of which,
BasicHttpBinding, is essentially equivalent to calling a Web service in version 2.0 because it supports traditional
client/server interaction over HTTP, where the client sends a request to the service and waits for the response.

The second predefined binding, which at the time of this writing has not been formally named, but which we call
the WindowsMobileMailBinding, is truly innovative in respect to messaging to devices. It uses e-mail as the
message transport and offers a duplex messaging channel that allows for unsolicited asynchronous bidirectional
messaging. For example, a client application running on a device used by a van driver who travels around picking
up packages from customers may register with a service running on a backend server that notifies client
applications whenever a new pickup request is received on the server. The service sends out pickup requests to
clients in an unsolicited fashion whenever one is ready. The client need not poll the server every few minutes to
ask whether any updates are available, which is the programming model you must use with Web Services today.

WCF is a layered protocol stack, so the way messages are formatted is independent of the way the messages are
transported. One other significant characteristic of WCF is that it has extensibility points that you can use to
create custom components and plug them into the overall WCF architecture. The .NET Compact Framework team
took advantage of these extensibility points to create the unique e-mail WCF message transport, which is
particularly well suited to the specific connectivity problems mobile devices encounter.

Using E-Mail as a WCF Transport, and the Story of the Lunch Launcher

In his blog (at blogs.msdn.com/romanbat), Roman Batoukov of the .NET Compact Framework team at Microsoft
tells the story of how e-mail came to be supported as a transport in Compact WCF. Prior to the release of .NET
Compact Framework 1.0, the development team often spent time imagining what kinds of applications mobile
developers would build. Roman explains:

"One of the really simple ideas that came up then and remained unimplemented was the 'Lunch
Launcher.' Many folks on the team prefer local restaurants to Microsoft cafeterias. Getting several
people to go out to the same place often requires lots of coordination over the phone or e-mail,
especially when people are away from their offices, in different buildings. Usually someone wants
Indian food, someone had Indian three days in a row and wants to go for Mexican, and someone
else has strong cravings for a slice of bad pizza. . . .

"As most people on the team have some sort of Windows Mobile device connected to WiFi or a
mobile carrier network, we thought it would be nice to have an application that allows one person
to send a lunch invite with a list of a few good local restaurants to other people and let them vote
where to go to. When the poll is finished, its results (the place of choice) are communicated back
to everyone and everyone hopefully is heading to the same place. Sounds trivial, doesn't it?"

The Lunch Launcher was never built (until now!) because a number of difficulties with the network addressability
of devices that are hard to overcome had to be addressed. Mobile devices that connect to the Internet through a

mobile operators network have dynamically assigned TCP/IP addresses that change frequently. Also, devices
connect through numerous firewalls and Network Address Translation (NAT) devices that make it very difficult to
establish the true publicly addressable TCP/IP address of a device, and almost impossible to initiate a TCP/IP
connection from a backend server or another device to connect to a device on a mobile phone operators network.

Consider another example: A worker who uses a device to connect to the Internet over WiFi while working in one
building goes outside, whereupon the device switches to connect through the mobile operators network over
GPRS or CDMA. The worker then enters a different building and connects to WiFi again, but in a different subnet
and with an IP address different from the one used in the first building. In that short walk from one building to
another, the device maintained connectivity to the Internet but had three different IP addresses.

Applications such as the Lunch Launcher require that an application running on one device be able to send a
message out to other devices. Unless all your devices connect to your local network using virtual private
networks (VPNs) or are permanently connected to the same WiFi network (such as in a warehouse application)
and you use a static IP addressing scheme, you cannot reliably connect to another device. Until now, the problem
of addressing devices connected to mobile phone networks has been solved either by the use of expensive
middleware or by a polling scheme, in which the application on the device calls in to the server every few
minutes to check whether there are any messages waiting for it.

However, since the release of Exchange Server 2003 SP2 and the Messaging and Security Feature Update to
Windows Mobile 5.0 (which came out shortly after the initial release of Windows Mobile 5.0 and is otherwise
known as Adoption Kit Update 2 [AKU2]), Microsoft has had a reliable way of addressing mobile devices
anywhere on the public networks, and that is through push e-mail. Push e-mail works because the device
connects to Exchange Server through a Microsoft Internet Information Server (IIS) server, and it makes a series
of long-lived HTTP requests (a long-lived request is a request that has a very long timeout associated with it) to
the Exchange Server. If Exchange Server receives a message for the e-mail address associated with the device, it
sends it straight on to the device as the HTTP response. If the HTTP request times out, then, no problem, the
device just issues a new long-lived request. If the device is offline, Exchange Server acts as a store-and-forward
transfer and saves the e-mail message until the device comes back online.

As you can see, this kind of behavior is ideal for use as a message transport for applications such as the Lunch
Launcher, providing device addressability (through the e-mail address) and store-and-forward behavior for
handling devices that are connected to transient and unreliable networks.

Supported Connectivity for Compact WCF

As mentioned previously, WCF is a layered architecture in which individual layers act independently of one
another. The messaging layer is concerned with the correct formatting of messages, while the transport layer is
concerned with the transfer of messages from one point to another. At the messaging level, WCF is based on a
number of Web Services WS-* standards and protocols, which are standards defined by industry bodies to
achieve interoperability between Web Services implementations from different vendors. The Compact WCF
messaging layer supports the following specifications:

WS-Addressing This specification defines a standard format for the message header and defines
information such as the destination address and return address for any response.

WS-Security This specification defines how a message is encrypted and how digital signatures are
transferred for authenticating the sender and recipient. Note that these security measures are
independent of the message transport used, so they work if the message is routed from one message
transport node onto another, whereas transport layer security such as Secure HTTP (HTTPS) operates only
between one computer and another.

WS-ReliableMessaging This specification is concerned with ensuring guaranteed delivery of a message
even over transient and unreliable networks.

A WCF service provides an endpoint to which clients send requests. An endpoint consists of three pieces of
information:

The address of the service The format of the address varies according to the transport protocol used.
So, for a service that you access over HTTP, the address is of the form http://myserver/LunchService
/LunchService.svc, whereas for the new store-and-forward e-mail transport, it is something like
myLunchService@microsoft.com/LunchService.

The binding supported by the service The binding for a service describes how a client can connect to
the service and the format of the data expected by the service. It specifies the transport protocol, the
encoding format of messages, and the security and transactional requirements of the service.

The contract implemented by the service This is an interface stored in a .NET assembly that has been
annotated with the [ServiceContract] attribute. It defines the methods on the service the client can call,
in other words, what operations the service supports.

This chapter can give you only the briefest of introductions to Windows Communication Foundation. To find out
more, see the documentation provided on the Microsoft MSDN Web site at msdn2.microsoft.com/en-
us/netframework/aa663324.aspx. For your first steps in programming WCF, we recommend the book Microsoft
Windows Communication Foundation Step By Step, written by John Sharp and published by Microsoft Press
(2007).

Programming WCF Using the BasicHTTPBinding

The first of the two bindings provided out of the box with Compact WCF is the BasicHTTPBinding. This is easy to
understand because it is essentially identical to making a call to a Web service. Your application sends an HTTP
request to the WCF service using a SOAP-encoded message and waits for the HTTP response. In contrast with the
store-and-forward e-mail transport, no unsolicited messaging is possible, so the WCF service can send messages
only in a response to a request from the client. The connectivity options are essentially the same as those for a
Web service, as shown in Figure 18-2.

Figure 18-2. Connectivity options for WCF using the BasicHTTPBinding

[View full size image]

Creating a WCF Service for Compact WCF Clients

The standard way to create a WCF service is to define a class annotated with the [DataContract] attribute that
describes the serializable class that you use to encapsulate the data for transfer, and an interface annotated with
the [ServiceContract] attribute that describes the operations exposed by the service. Then, to write the
implementation of the service, you create a class that implements the service contract interface, such as the
following example:

using System.Runtime.Serialization;
using System.ServiceModel;

...
 // WCF Service class that implements the IMobileDataService service
 // contract interface
 public class MobileDataImpl : IMobileDataService
 {
 public MobileWCFObject GetMessage()
 {
 MobileWCFObject dataContract =
 new MobileWCFObject(1, "Hello, World");
 return dataContract;
 }
 }
...

This kind of simple implementation will not work with Compact WCF clients because the standard serializer
associated with the WCF DataContract attribute has too large a footprint for implementation in the Compact
WCF. As a result, we have to implement a custom serializer that extends XmlObjectSerializer for use in
serializing and deserializing Compact WCF messages.

For example, Listing 18-1 shows an example of a class called MobileWCFObject that we use as our message
payload and a custom serializer class that we use to serialize and deserialize it. You need to add a reference to
System.ServiceModel and System.Xml.Serialization to your project.

Listing 18-1. Definition of a Class for Transfer over WCF with Its Serializer

using System;
using System.ServiceModel;
using System.ServiceModel.Description;
using System.ServiceModel.Channels;
using System.Xml;
using System.Xml.Serialization;
using System.Runtime.Serialization;

namespace NetCFDevelopersReference.WCFSample.Common
{
 [System.SerializableAttribute()]
 [System.Xml.Serialization.XmlTypeAttribute(
 Namespace = "http://Microsoft.ServiceModel.Samples")]
 public class MobileWCFObject
 {
 [System.Xml.Serialization.XmlElementAttribute(Order = 0)]
 public string message;

 [System.Xml.Serialization.XmlElementAttribute(Order = 1)]
 public int i;
 }

 public sealed class XmlSerializerWrapper : XmlObjectSerializer
 {
 XmlSerializer serializer;
 string defaultNS;
 Type objectType;

 public XmlSerializerWrapper(Type type)
 : this(type, null, null)
 { }

 public XmlSerializerWrapper(Type type, string name, string ns)
 {
 this.objectType = type;
 if (!String.IsNullOrEmpty(ns))
 {
 this.defaultNS = ns;
 this.serializer = new XmlSerializer(type, ns);
 }
 else
 {
 this.defaultNS = "";
 this.serializer = new XmlSerializer(type);
 }
 }
 public override bool IsStartObject(XmlDictionaryReader reader)
 { throw new NotImplementedException(); }

 public override object
 ReadObject(XmlDictionaryReader reader, bool verifyObjectName)
 { throw new NotImplementedException(); }

 public override void WriteEndObject(XmlDictionaryWriter writer)
 { throw new NotImplementedException(); }

 public override void
 WriteObjectContent(XmlDictionaryWriter writer, object graph)
 { throw new NotImplementedException(); }

 public override void
 WriteStartObject(XmlDictionaryWriter writer, object graph)
 { throw new NotImplementedException(); }

 public override void
 WriteObject(XmlDictionaryWriter writer, object graph)
 {
 this.serializer.Serialize(writer, graph);
 }

 public override object ReadObject(XmlDictionaryReader reader)
 {
 string readersNS;

 readersNS =
 (String.IsNullOrEmpty(reader.NamespaceURI)) ? "" : reader.NamespaceURI;
 if (String.Compare(this.defaultNS, readersNS) != 0)
 {
 this.serializer =
 new XmlSerializer(this.objectType, readersNS);
 this.defaultNS = readersNS;
 }

 return (this.serializer.Deserialize(reader));

 }

 }

 ...
}

You need to use the classes shown in Listing 18-1 on both the client and the server.

One thing that distinguishes WCF from Web Services is that—with the appropriate coding—you can host WCF
services in any process, not just in IIS. For example, you can create a Windows Service or a simple Windows
Forms application, add a reference to the project containing the common code from Listing 18-1, and write code
to programmatically build a channel, listen on a specific port, and respond to requests, such as that shown in
Listing 18-2.

Listing 18-2. WCF Service for Compact WCF Clients

using System.ServiceModel;
using System.ServiceModel.Description;
using System.ServiceModel.Channels;
using System.Xml;
using System.Xml.Serialization;
using System.Runtime.Serialization;
using NetCFDevelopersReference.WCFSample.Common;

namespace NetCFDevelopersReference.WCFSample
{
 public class CompactWCFServer
 {
 public void ReceiveCompactWCFMessage()
 {
 // Build the channel using the BasicHTTPBinding.
 BasicHttpBinding binding = new BasicHttpBinding();
 BindingParameterCollection parameters =
 new BindingParameterCollection();

 IChannelListener<IReplyChannel> listener =
 binding.BuildChannelListener<IReplyChannel>(
 new Uri("http://LocalHost:8000/MobileService"), parameters);

 // Start listening for incoming requests.
 listener.Open();

 // Create the XMLSerializer wrapper for the object we will
 // receive.
 XmlSerializerWrapper wrapper =
 new XmlSerializerWrapper(typeof(MobileWCFObject));

 // Accept request and open response channel.
 IReplyChannel channel = listener.AcceptChannel();
 channel.Open(TimeSpan.MaxValue);

 // Receive the message and process it.
 RequestContext r = channel.ReceiveRequest(TimeSpan.MaxValue);

 MobileWCFObject transferObj =
 r.RequestMessage.GetBody<MobileWCFObject>(wrapper);

 // Do something with it. Here, we modify its contents
 // and send it back.
 transferObj.message = transferObj.message + "World";
 transferObj.i = transferObj.i + 1;

 // Build the response message.
 Message m = Message.CreateMessage(
 MessageVersion.Soap11, "urn:test", transferObj, wrapper);
 // Send response.
 r.Reply(m, TimeSpan.MaxValue);
 }
 }
}

Programming the WCF Client

On the device side, the first thing to realize is that in Compact WCF, unlike in WCF for the full .NET Framework,
there is no support for configuration files to define to which address to make the request or the binding to use.
Coupled with the requirement for custom serialization already discussed, the result requires rather more code
than you may be accustomed to when programming WCF clients in the full .NET Framework.

You must create your device project and add a reference to the project containing the class library shown earlier
in Listing 18-1. Then write code to define the channel, make the request, and wait for the response, as shown in
Listing 18-3.

Listing 18-3. Compact WCF Client

using System.ServiceModel;
using System.ServiceModel.Description;
using System.ServiceModel.Channels;
using System.Xml;
using System.Xml.Serialization;
using System.Runtime.Serialization;
using NetCFDevelopersReference.WCFSample.Common;

namespace NetCFDevelopersReference.WCFSample
{
 public class CompactWCFClient
 {
 public void SendCompactWCFMessage()
 {
 // Build the message to send.
 MobileWCFObject wcfMsg = new MobileWCFObject ();
 wcfMsg.message = "hello";
 wcfMsg.i = 5;

 XmlSerializerWrapper wrapper =
 new XmlSerializerWrapper(typeof(MobileWCFObject));

 Message m =
 Message.CreateMessage(MessageVersion.Soap11, "urn:test", wcfMsg, wrapper);

 // Create the channel. In this example, we use the built-in
 // text encoder and http transport to construct a channel factory.
 BasicHttpBinding binding = new BasicHttpBinding();
 BindingParameterCollection parameters =
 new BindingParameterCollection();

 IChannelFactory<IRequestChannel> channelFactory =
 binding.BuildChannelFactory<IRequestChannel>(parameters);

 channelFactory.Open();

 // Open the channel.
 IRequestChannel outChannel = channelFactory.CreateChannel(
 new EndpointAddress(
 new Uri("http://MyServer:8000/MobileService")));
 outChannel.Open(TimeSpan.MaxValue);

 // Send the message and wait for the reply.
 Message reply = outChannel.Request(m, TimeSpan.MaxValue);

 // Do something with the response.
 MobileWCFObject to1 = reply.GetBody<MobileWCFObject>(new
 XmlSerializerWrapper(typeof(MobileWCFObject)));

 MessageBox.Show(to1.message + " " + to1.i.ToString());

 // Tidy up.
 m.Close();
 reply.Close();
 outChannel.Close();
 channelFactory.Close();
 }
 }
}

Generating a Proxy Class Using Compact Svcutil

In the full .NET Framework, you can use the command-line utility called Svcutil to query the metadata for a
service and generate a proxy class that you can add to your project to call the service. Using a tool-generated
proxy in this way avoids the need for programmatic access to the service such as that shown in the preceding
section. When you use the Add Service Reference feature in a full .NET Framework project, underneath the
wrappers Visual Studio just runs Svcutil and automatically adds the proxy to your project—a process you will
recognize as being very similar to the Add Web Reference feature for Web Services that you may be more
familiar with using.

A version of Svcutil for Compact WCF will generate proxies suitable for .NET Compact Framework 3.5, although in
the initial release this will work only for services you call using the BasicHttpBinding. So you will still have to call
the WindowsMobileMailBinding programmatically. When you use the tool-generated proxy, you do not have to
use the code shown in the preceding section. Instead, you simply instantiate an instance of the proxy class and
then call methods on it to make the WCF call, just as you do with Web Services proxies. At the time of this
writing, the compact Svcutil tool will not be included in the initial release of Visual Studio Code Name "Orcas"
but instead will be released shortly afterward as a separate download.

Programming WCF Using the E-Mail Transport

The e-mail message transport requires Exchange Server 2007—not for the device to Exchange Server connection,
which uses the push e-mail capability (also called AirSync) that has been available for Windows Mobile for some
time now, but for the server-side application for Exchange Server communications. The WCF libraries Microsoft
has created for the e-mail message transport communicate with Exchange Server using Exchange Web Services,
which are not supported on earlier versions of Exchange Server. It is to be hoped that a custom e-mail channel
implementation for Exchange Server 2003 will be available from the developer community at some point. The
connectivity options are shown in Figure 18-3.

Figure 18-3. Connectivity options for WCF using the ExchangeBinding

[View full size image]

Programming WCF for the E-Mail Transport

The e-mail transport is not tied to the request–response pattern required by the HTTP transport. As a
consequence, you can think of it as one-way messaging, although of course you could open separate channels for
both send and receive on both a backend server and on a client device to enable two-way communication. Listing
18-4 shows how to send an unsolicited message from a program on a backend server to a program on a mobile
device. This example is somewhat simpler than is the BasicHTTPBinding example shown previously.

The logic for a Windows console application, which is the sender, is shown in Listing 18-4. Note that you still
need the XmlCustomSerializer custom serializer class shown previously in Listing 18-1. It sends a message
containing a string—the name of a fictional employee—to the remote application.

Listing 18-4. Sending a Message Using the E-Mail Transport

using System;
using System.Collections.Generic;
using System.Text;
using System.Net;
using System.ServiceModel;
using System.ServiceModel.Channels;
using Microsoft.ServiceModel.Channels.Mail;
using Microsoft.ServiceModel.Channels.Mail.ExchangeWebService;
namespace NetCFDevelopersGuide.EmployeeUpdate

{
 class Program
 {
 private static Uri ExchangeServer =
 new Uri("http://mail.contoso.com.107.72.20");
 private static string UserEmail = "test@contoso.com";
 private static string Password = "P@ssw0rd";

 private static string DestinationEmail = "test1@contoso.com";
 private static string OutputChannelName = "EmployeeViewer";

 static void Main(string[] args)
 {
 ExchangeWebServiceMailBinding mailBinding;
 IChannelFactory<IOutputChannel> factory;
 IOutputChannel outputChannel;
 CFMessagingSerializer serializer;
 Message message;

 // NetworkCredential can be null here if you want to use
 // Windows Integrated Security.
 mailBinding = new ExchangeWebServiceMailBinding(
 Program.ExchangeServer,
 new NetworkCredential(Program.UserEmail, Program.Password));

 factory = mailBinding.BuildChannelFactory<IOutputChannel>(
 new BindingParameterCollection());
 factory.Open();

 outputChannel = factory.CreateChannel(
 new EndpointAddress(MailUriHelper.Create(
 Program.OutputChannelName,
 Program.DestinationEmail)));
 outputChannel.Open();

 serializer = new XmlSerializerWrapper(typeof(string));
 message = Message.CreateMessage(MessageVersion.Default,
 "AddEmployee", "Jeff Smith", serializer);

 Console.Write("Sending the update... ");
 outputChannel.Send(message);
 Console.WriteLine("done.");

 outputChannel.Close();
 factory.Close();
 mailBinding.Close();
 }
 }
}

The client application is a Windows Forms application running on a device. This opens a listener channel on a
background thread and waits for messages. When it receives a message containing the name of the new
employee, it adds it to the list of names shown in the ListBox on the form. The code is shown in Listing 18-5. As
with the other examples, this too requires the XmlSerializerWrapper custom serializer class.

Listing 18-5. Device Application That Receives Messages Using the E-Mail Transport

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Threading;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.ServiceModel;
using System.ServiceModel.Channels;
using Microsoft.ServiceModel.Channels.Mail;
using Microsoft.ServiceModel.Channels.Mail.WindowsMobile;

namespace NetCFDevelopersReference.EmployeeViewer
{
 public partial class MainForm : Form

 {
 public static string InputChannelName = "EmployeeViewer";

 private delegate void AddEmployeeDelegate(string employeeName);

 private WindowsMobileMailBinding mailBinding;
 private IChannelListener<IInputChannel> listener;
 private IInputChannel inputChannel;

 private Thread listenerThread;
 private bool isClosed;

 private XmlSerializerWrapper serializer;

 public MainForm()
 {
 InitializeComponent();
 }

 private void menuItemClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 private void MainForm_Load(object sender, EventArgs e)
 {
 this.isClosed = false;
 this.listenerThread =
 new Thread(new ThreadStart(this.ListenerThread));
 this.listenerThread.Start();
 }

 private void MainForm_Closed(object sender, EventArgs e)
 {
 this.isClosed = true;

 if (this.inputChannel != null)
 {
 // Closing the channel will unblock the
 // inputChannel.Receive() call on the listener thread.
 this.inputChannel.Close();
 }

 this.listenerThread.Join();
 }

 private void ListenerThread()
 {
 BindingParameterCollection parameters;
 Message message;
 string employeeName;

 this.mailBinding = new WindowsMobileMailBinding();
 parameters = new BindingParameterCollection();

 this.listener =
 this.mailBinding.BuildChannelListener<IInputChannel>(
 MailUriHelper.CreateUri(InputChannelName, ""),
 parameters);
 this.listener.Open();

 this.inputChannel = this.listener.AcceptChannel();
 this.inputChannel.Open();

 this.serializer = new XmlSerializerWrapper(typeof(string));

 while (!this.isClosed)
 {
 message = this.inputChannel.Receive();

 // The Receive() method will return null if the input channel
 // has been closed (for example, from a different thread).
 if (message != null)
 {
 employeeName = message.GetBody<string>(this.serializer);
 this.BeginInvoke(

 new AddEmployeeDelegate(this.AddEmployee),
 new object[] { employeeName });
 }
 }
 this.inputChannel.Close();
 this.listener.Close();
 this.mailBinding.Close();
 }

 private void AddEmployee(string employeeName)
 {

 this.listBox.Items.Add(employeeName);
 MessageBox.Show(employeeName +
 " has been added to the list of employees");
 }
 }
}

Programming Language Integrated Query

.NET Framework 3.5 uses new versions of the Microsoft Visual C# and Visual Basic compilers, which introduce
new syntax into the languages to support querying operations in your programming code. This is called Language
Integrated Query (LINQ). With LINQ, you can write declarative code to query data sources regardless of their
origin. In the full framework, the current plans are for LINQ to operate on in-memory object collections, XML,
DataSets, SQL Server, and Entities. The Compact Framework does not support LINQ to SQL Server (including
SQL Server CE) or Entities. The query syntax is somewhat similar to SQL, so it will be familiar to developers who
have written database code.

This section is not intended to be a comprehensive reference for LINQ. Instead, we highlight the LINQ
functionality that will be available in .NET Compact Framework 3.5. You can read more about LINQ on the LINQ
Project Web site at msdn2.microsoft.com/en-us/netframework/aa904594.aspx.

You can find an explanation of the programming constructs on which LINQ is based on the LINQ Resources page
of the Moth Web site at www.danielmoth.com/Blog/2007/02/linq-resources.html.

Query Syntax

A simple expression will be familiar to anyone who has used structured query language (SQL):

var contacts =
 from c in customers
 where c.State == "WA"
 select new { c.Name, c.Phone };

This simple query uses a number of innovations introduced with C# 3.0 and Visual Basic 9, which we look at in
the following sections. The customers object can be any collection that implements IEnumerable, and c
represents a single item in the collection, which you can see in this particular example has at least the Name,
Phone, and State properties. As with an SQL statement, you can use one or more where clauses to restrict the
results. Here we compare the State string property to "WA". The select keyword defines a projection for the
query and results in a collection of items with just the Name and Phone properties. These results are actually
strongly typed but use the new support for anonymous types introduced with the C# (and Visual Basic) language
enhancements; this is why we are not naming a particular return object type but instead use the var keyword for
the type of the contacts variable (see the section titled "Type Inference" later in this chapter for more
information about the var keyword).

Lambda Expressions

C# version 2.0 introduced the concept of anonymous delegates, which you can use to define the contents of a
delegate method in the code you write to hook up the delegate. Behind the scenes, it creates the delegate type
and method for you, but the type isn't exposed to your code; hence it is anonymous. To support LINQ, this is
taken one step further, and the concept of lambda expressions is introduced. Take the following longhand
example:

delegate bool NumberCrunchDelegate(int i);
public void SomeMethod()
{
 NumberCrunchDelegate ncd = new NumberCrunchDelegate(NumberCrunch);
 // other code here
 CallTheDelegate(ncd);
}
private bool NumberCrunch(int i)
{

 return i > 2;
}
private void CallTheDelegate(NumberCrunchDelegate f)
{
 bool result = f(5);
 Console.WriteLine(result.ToString());
}

The NumberCrunch method receives an integer and returns true if it is greater than 2. The
NumberCrunchDelegate provides a delegate for this method signature. SomeMethod creates a new instance of
this delegate using the NumberCrunch method, and CallTheDelegate calls the method from the passed delegate.
This can be rewritten using anonymous methods in C# 2.0:

delegate bool NumberCrunchDelegate(int i);
private void SomeMethod()
{
 NumberCrunchDelegate sd = delegate(int i){return i > 2;} ;
 // other code here
 CallTheDelegate(sd);
}
private void CallTheDelegate(NumberCrunchDelegate f)
{
 bool result = f(5);
 Console.WriteLine(result.ToString());
}

Here the NumberCrunch method is no longer used and the method body is defined when the instance of
NumberCrunchDelegate is created using the delegate keyword. With lambda expressions, this can be made even
more concise by using the new => operator. The following two expressions are equivalent:

delegate(int i){return i > 2;}
(int i) => { return i > 2;}

Furthermore, lambda expressions support inference, which means that in the preceding code you do not have to
state that i is an integer. Also, if the body of the lambda expression is a single return statement (as in the
preceding example), you do not have to enclose it in braces, and you do not need to use the return keyword:

i => i > 2

Although LINQ supports the new query syntax, all operations have an equivalent lambda expression that can be
used behind the scenes to build your code. For example, the following two statements are equivalent:

var contacts =
 from c in customers
 where c.State == "WA"
 select new { c.Name, c.Phone };

var contacts =
 customers
 .Where(c => c.State == "WA")
 .Select(c => new { c.Name, c.Phone });

Extension Methods

You can replace all of the standard methods used in querying, such as Select, with your own custom
implementations. This is supported by another new language feature called extension methods. With extension
methods, you can create a new static method that appears as an instance member of a particular type. This is
achieved by adding the this keyword to the first argument passed to the method. For example, the following
extension method applies to the String type:

public static bool IsAllUpper(this string s)
{
 ...
}

The method is supported in Microsoft IntelliSense in Visual Studio, as shown in Figure 18-4.

Figure 18-4. IntelliSense for the IsAllUppercase extension method

[View full size image]

Extension methods are not limited to use in LINQ code; however, they are a key part of the way that LINQ works.

Type Inference

The compiler can infer the type of local variables through the var keyword. The var keyword is used to create a
local variable that is strongly typed (not the same as a variable of type object). For example, the following code
example creates items of int, string, and double types, respectively:

var i = 7;
var s = "Hello";
var d = 3.4;

The var keyword can be used only for local variables that are immediately followed by an assignment in the same
statement. They cannot be used as a return type for methods or for members of a class or structure, or for
parameters of methods. Because the compiler knows the strong type of these var variables, it shows the correct
IntelliSense help as you code and generates an error if you try to pass the variable to a method that accepts a
different argument type.

Anonymous Types

With anonymous types, you can define a type at the time you create an object. This is useful when performing a
projection operation when you want to return a specific subset of properties that you won't use as a type
elsewhere in your code. An example of creating an anonymous type to store personal information can be written
as follows:

var x = new {
 Name = "Stephanie",
 Email = "stephanie@adventure-works.com"
};

X is an object of an anonymous type that exposes the Name and Email string properties. If you pass in just the
values of properties on another object and don't define the property names, the property names will be inferred
from the other object. For example, the following code example creates another anonymous typed object with
Name and Phone properties:

var y = new {
 x.Name,
 Phone = "+1 555-0123"
}

LINQ to Objects

You can query any collection of objects that exposes the IEnumerable<T> interface by using LINQ. To
demonstrate, following is a simple query on the built-in FontFamilies collection:

InstalledFontCollection ifc = new InstalledFontCollection();

var results = from p in ifc.Families
 select p;

foreach (var o in results)
{
 Debug.WriteLine(o.ToString());
}

LINQ to XML

Probably one of the most powerful uses of LINQ is for querying and generating XML. With LINQ to XML, you can
use the simple declarative syntax to work with complex XML content easily. A new set of XML classes is provided
to implement LINQ support: XDocument, XElement, and XAttribute.

These new classes provide a simpler programming model for creating and manipulating XML than is possible in
previous versions of .NET. For example, the following code is what you would write to create a simple XML
output:

XmlDocument doc = new XmlDocument();
XmlElement books = doc.CreateElement("Books");
XmlElement book = doc.CreateElement("Book");
XmlElement title = doc.CreateElement("Title");
XmlElement price = doc.CreateElement("Price");

doc.AppendChild(books);
books.AppendChild(book);
book.AppendChild(title);
book.AppendChild(price);

title.AppendChild(
doc.CreateTextNode("Microsoft Mobile Development Handbook"));
price.AppendChild(doc.CreateTextNode("99.95"));

doc.Save("MyBooks.xml");

This creates the following XML output:

<Books>
 <Book>
 <Title>Microsoft Mobile Development Handbook</Title>
 <Price>99.95</Price>
 </Book>
</Books>

The same XML can be generated using the following code in .NET Compact Framework 3.5:

XDocument doc =
new XDocument(
 new XElement("Books",
 new XElement("Book",
 new XElement("Title", "Microsoft Mobile Development Handbook"),
 new XElement("Price", "99.95")
)
)
)

doc.Save("MyBooks.xml");

Not only is the code far more concise, it's also easier to read because its structure follows that of the XML output.

The following example works on an XML version of the Northwind sample database. First, the contents are loaded
into an XDocument container, a query is run, and then the results are written out as a new XDocument. The
query performs a join on the orders and customers on the CustomerID field. Next, a where clause is issued to
select only records for which the order shipping country is the same as the customer's country. A projection is
run to output just the required fields from the resulting table. Finally, this transformed data is saved to disk and
opened in Microsoft Internet Explorer Mobile for viewing.

public static void ProcessNorthwind()
{
string path = System.IO.Path.GetDirectoryName(
Assembly.GetExecutingAssembly().GetName().CodeBase);

XDocument doc = XDocument.Load(System.IO.Path.Combine(path,
"northwind.xml"));

var customers = doc.Root.Elements("Customers");
var orders = doc.Root.Elements("Orders");

XDocument transformed = new XDocument(
new XElement("OrdersWithCustomers",
 from o in orders

 join c in customers
 on (String)o.Element("CustomerID")
 equals (String)c.Element("CustomerID")

 let country = (string)c.Element("Country")
 let shipCountry = (string)o.Element("ShipCountry")

 where (country != null) &&
 (shipCountry != null) &&
 (country == shipCountry)

 select new XElement("OrderWithCustomerInfo",
 new XAttribute("ID", (String)o.Element("OrderID")),
 new XAttribute("Company", (String)c.Element("CompanyName")),
 new XAttribute("City", (String)c.Element("City")),
 new XAttribute("Country", country),
 new XAttribute("Date", (String)o.Element("OrderDate"))
)));

// Write the transformed XML.
 transformed.Save("customersOrders.xml");

// Open the created XML document.
System.Diagnostics.Process.Start(@"file://\customersOrders.xml", null);
}

This generates output XML in the following format:

<OrdersWithCustomers>
 <OrderWithCustomerInfo ID="10643" Company="Alfreds Futterkiste"
 City="Berlin" Country="Germany" Date="1997-08-25T00:00:00-07:00"/>
</ OrdersWithCustomers>

LINQ to DataSet

Because the DataSet exposes an enumerable collection of rows, it's not surprising that you can also use LINQ
with the contents of a DataSet. To support this, the DataTable class has a new method called AsEnumerable()
that returns a collection suitable for use in a LINQ query. The row objects returned have a Field accessor so that
you can refer to individual field values in your query. For example, to select a list of users' first names from a
table where their last name is Smith, you can use the following:

var query = from dataRow in usersDataTable.AsEnumerable()
 where r.Field<string>("LastName") == "Smith"
 select r.Field<string>("FirstName");

You can use any of the LINQ syntax we have already discussed when targeting a DataSet with your query.

LINQ to DataSet is something that you should use with care from a smart device project. Because a DataSet is
an in-memory copy of data, it is not a particularly efficient method of working with a local data source. Instead,
in most cases you would be wise not to use LINQ to DataSet but instead to use the traditional ADO.NET classes
to execute your query directly against a SQL Server CE database using a SqlCeResultSet object to step through
the data directly.

Programming System.IO.Compression

As mobile developers, we are used to working in a constrained environment. We are also used to the high cost of
transferring data over a phone network and the difficulty in doing large data transfers over slow, unreliable
networks. It follows, then, that we are interested in compression. The full .NET Framework included the
System.IO.Compression namespace in version 2.0 to support compression using industry-standard gzip or
deflate algorithms, and this support is extended to devices in .NET Compact Framework 3.5.

The GZipStream and DeflateStream classes in System.IO.Compression support compression of any generic
stream, such as FileStream, MemoryStream, TextWriter, XmlWriter, NetworkStream, and so on. As a simple
example, consider the following methods you can use to compress and decompress a file:

using System.IO;
using System.IO.Compression;
...
private void Compress(string infile, string outfile)
{
 using (FileStream inStream = File.OpenRead(infile))
 {
 using (FileStream outStream = File.OpenWrite(outfile))
 {
 using (GZipStream compressedStream =

 new GZipStream(outStream, CompressionMode.Compress))
 {
 byte[] data = new byte[inStream.Length];
 inStream.Read(data, 0, data.Length);
 compressedStream.Write(data, 0, data.Length);
 }
 }
 }
}

private void Decompress(string infile, string outfile)
{
 using (FileStream inStream = File.OpenRead(infile))
 {
 using (FileStream outStream = File.OpenWrite(outfile))
 {
 using (GZipStream decompressedStream =
 new GZipStream(inStream, CompressionMode.Decompress))
 {
 int data;
 while ((data = decompressedStream.ReadByte()) != -1)
 outStream.WriteByte((byte)data);
 }
 }
 }
}

This support for compression in the Base Class Libraries can also be used for automatic decompression of data
you read over HTTP using System.Net.WebRequest or when calling a Web service.

When making requests for Web content using System.Net.WebRequest, just set
WebRequest.AutomaticDecompression to DecompressionMethods.GZip or DecompressionMethods.Deflate (or you
can OR them together to accept both), and WebRequest inserts the appropriate Accept-Encoding=gzip and/or
Accept-Encoding=deflate headers into your outgoing HTTP request. If the Web server is configured to do so, it
will send compressed content in the response. Back on the client, the HttpWebResponse object will automatically
decompress the response it receives. For example:

using System.Net;
using System.IO.Compression;
...
Uri address = new Uri ("http://mywebresource/dest.htm");
HttpWebRequest request = WebRequest.Create(address) as HttpWebRequest;
request.AutomaticDecompression =
 DecompressionMethods.GZip | DecompressionMethods.Deflate;

using (HttpWebResponse response = request.GetResponse() as HttpWebResponse)
{
 // HttpWebResponse automatically decompresses response stream.
 Stream stream = response.GetResponseStream();
 StreamReader reader = new StreamReader (stream);
 string line = reader.ReadLine();
 MessageBox.Show (line);
}

You can get the same behavior with calls to Web services by setting the EnableDecompression property to true
on your Web Services proxy class.

MyApp.MyService webServiceProxy = new MyApp.MyService();
webServiceProxy.EnableDecompression = true;

In Chapter 7, we discussed how to receive compressed data from a Web service in .NET Compact Framework 2.0
using SOAP extensions. The method described there is still valid in version 3.5 and is still a good way of
compressing the outgoing request from the client to the server, which setting the EnableDecompression property
doesn't do. For receiving compressed content in the response, the built-in support in version 3.5 just described
makes this task much simpler.

To find out how to enable IIS to compress HTTP responses automatically for those clients that support
compressed content, see the article titled "Enabling HTTP Compression" on the Microsoft TechNet Web site at
technet2.microsoft.com/WindowsServer/en/library/ae342c42-fbc4-4ab7-
b9ac-20a89f0fa4ad1033.mspx?mfr=true.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Unit Testing in Visual Studio Code Name "Orcas" Team System

The different editions of Visual Studio that are part of the Team System family integrate tools to help with the
full software development life cycle, from design through development, testing, build, and bug tracking and
resolution. The editions of Team System that are targeted at software developers are Visual Studio Team
Developer Edition and Visual Studio Team Suite. With these editions, you can create and run unit tests. In Visual
Studio 2005, unit testing is available only for applications built on the full .NET Framework, but in "Orcas" these
capabilities extend to applications built on the .NET Compact Framework.

If you are unfamiliar with unit testing, refer to Chapter 4. The idea is that as you develop your application code,
in parallel if not before, you also develop a suite of unit tests to test your code. You run the tests continuously
during the development cycle, and obviously, you should not ship your product if any tests fail. The test suite
also provides an essential tool for regression testing—as your application changes over time and new features are
added, you can verify that your changes have not broken any existing functionality by rerunning the unit tests.

If done properly, your test code should consist of a large number of tests and should rival the actual product for
lines of code. There is even a particular approach to software development called Test-Driven Development
(TDD), in which you identify the feature you are about to implement in your solution, but before you write the
code for that feature, you write the test or tests that will verify its correct implementation. Only when the test
code is complete do you go on to make the changes to your application code. This technique is favored by many
groups at Microsoft, including the patterns and practices group, who wrote the Mobile Client Software Factory
mentioned frequently throughout this book.

Writing Unit Tests in Visual Studio Code Name "Orcas"

To get the best out of unit testing, it's advisable to architect your applications to place as much logic as possible
in class libraries, and not in Windows Forms. The Visual Studio Team System tools for unit testing work best
when the test target is a class library. The tools do not offer any features for user interface (UI) testing, such as
the ability to script tests that enter text in text boxes or click buttons.

There are plenty of good reasons for building applications with a thin UI layer and as much logic as possible in
class libraries, quite apart from unit testing. One reason is that if you have a thin UI layer, you can easily replace
it with a different UI should you choose to move your application to a different device with a different form factor
or screen size.

To understand how it works, consider the trivial example of a calculator application that you can use to add,
subtract, multiply, and divide integers. The logic of this class is contained in a class called CalculatorLogic.
Ideally, you'll be doing Test-Driven Development, so your first iteration of this class will contain just the empty
method stubs, and you will create unit tests before you write the logic. But for brevity in this example, we have
supplied the class logic (see Listing 18-6). In Listing 18-6, you can see that the developer made two mistakes in
the logic, one in the Subtract method, which is obvious, and a subtler one in the Divide method—but this is by
design for the purposes of this illustration. These mistakes are what you intend to uncover through writing unit
tests.

Listing 18-6. Class Containing Erroneous Logic for a Calculator

namespace MobileDevelopersHandbook.UnitTestingExample

{

 public class CalculatorLogic

 {

 public int Add(int p1, int p2)

 {

 return p1 + p2;

 }

 public int Subtract(int p1, int p2)

 {

 return p1 + p2;

 }

 public int Multiply(int p1, int p2)

 {

 return p1 * p2;

 }

 public float Divide(int p1, int p2)

 {

 return p1 / p2;

 }

 }

}

There are a number of ways to write unit tests, but the easiest way for a class such as this is simply to right-click
the class and click Create Unit Tests on the shortcut menu, as shown in Figure 18-5.

Figure 18-5. Creating unit tests for a class from in the Code Editor

[View full size image]

Next, Visual Studio asks for which classes in your project it should generate tests, as shown in Figure 18-6.
Remember to select Create A New Smart Device C#/VB Test Project in the drop-down menu at the bottom of this
dialog box.

Figure 18-6. Selecting the classes to test

[View full size image]

After this, Visual Studio creates a new Test project and adds it to your solution. It also generates a class that
contains stubs for tests for each public method, as well as some methods that are called at the start and end of
each test run. You can add setup and cleardown code to the start and end of each test run. The stub for a test
looks like the following:

 /// <summary>

 ///A test for Multiply (int, int)

 ///</summary>

 [TestMethod()]

 public void MultiplyTest()

 {

 CalculatorLogic target = new CalculatorLogic();

 int p1 = 0; // TODO: Initialize to an appropriate value

 int p2 = 0; // TODO: Initialize to an appropriate value

 int expected = 0;

 int actual;

 actual = target.Multiply(p1, p2);

 Assert.AreEqual(expected, actual,

 "MobileDevelopersHandbook.UnitTestingExample.CalculatorLogic.Multiply " +

 " did not return the expected value.");

 Assert.Inconclusive(

 "Verify the correctness of this test method.");

 }

As you can see, Visual Studio generates the outline for a simple test. You must edit it to perform the testing you
need. You can report whether the test succeeded or failed by calling one of the Assert class methods, such as
Assert.AreEqual, as used in the preceding sample. When your test is complete, you should remove the call to
Assert.Inconclusive from the last line—Visual Studio inserts that line to alert you to tests that you have not
written yet because the Inconclusive status will be reported when you come to run a test that still includes this
line. Needless to say, you can create additional tests—just decorate them with the [TestMethod] attribute to
ensure that they are run.

Running Unit Tests

After your tests are complete, you need to run them. There are two ways of doing this: through the Test View
window or by using the Test Manager. Neither is visible by default, so make one or both of them visible by
clicking the Windows option on the Test menu.

By default, the Test View window opens as a tab in Solution Explorer, as shown in Figure 18-7. In the Test View
window, you can select one or more tests and then run them by clicking the arrow at the top of the window.

Figure 18-7. Running tests from the Test View window

[View full size image]

After you click the arrow, Visual Studio deploys the tests to your target device or emulator and runs them. No UI
is displayed on the device, but instead the results are displayed in the Test Results window, as shown in Figure
18-8.

Figure 18-8. Viewing test results

[View full size image]

Each time you run the tests, the results are stored in a folder called TestResults in your project, and if your
solution is under source control, they are stored in your Source Code Controller along with your application code.
The test suite and results become part of your overall solution.

As your project progresses, your test suite grows and provides an invaluable tool to ensure that your solution
receives proper testing. Another feature of the Team System testing tools is that you can also view test coverage
to identify parts of your code that your unit tests are not running. Unit tests are also really valuable for
identifying unanticipated failures when you make changes in one part of your application that inadvertently

cause breakage elsewhere.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Summary

In this chapter, we discuss the new features for device application developers included in Visual Studio Code
Name "Orcas" and in the new runtime .NET Compact Framework version 3.5. The information presented is based
on the beta 1 release of Visual Studio "Orcas," so we can make no guarantee that the features described will be
present or will operate in the final released product as described.

.NET Compact Framework 3.5 builds on the feature set of version 2.0 by adding much-requested features from
the full .NET Framework 2.0, such as compression and the ability to play sound files. Subsets of exciting
technologies available in the full .NET Framework 3.5, such as LINQ and Windows Communication Foundation
(WCF), will now also be available in the new version of the Compact Framework. Compact WCF introduces an
innovative message transport built on e-mail that provides a solution for the particular problems we experience
with addressability of mobile devices connected to public networks.

In addition, the .NET Compact Framework team and the Visual Studio for Devices team have delivered new and
improved tools that help with mobile application development, testing, and logging and monitoring applications
at run time.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

About the Authors

Andy Wigley

Daniel Moth

Peter Foot

Andy Wigley

Andy Wigley has been building mobile computing solutions for many years and has been awarded Most Valuable
Professional (MVP) status by Microsoft every year since 2003 for his work assisting the Microsoft .NET Compact
Framework developer community. He leads the mobile development and consulting company, Andy Wigley
Computing Ltd (www.wigleycomputing.co.uk). He has enjoyed a long working relationship with Content Master,
delivering consultancy and creating books, Microsoft MSDN articles, and other training materials mainly aimed at
those early adopters working at the "bleeding edge" of the newest Microsoft development technologies. Andy is a
regular speaker at major Microsoft conferences such as MEDC and TechEd, and he is the co-author of Microsoft
Press books on the .NET Compact Framework version 1.0 and on developing ASP.NET Web sites for mobile
devices.

Outside computing, Andy is a climber/mountaineer, both on the crags of Wales where he lives, and also in the
Alps and the Himalaya. He also performs regularly in the pubs of North Wales in a three-piece rock band.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Daniel Moth

Daniel Moth works in the United Kingdom for Microsoft in the Development and Platform group. Daniel gets to
"play" with the latest and greatest Microsoft software, and then explains and demonstrates it in his blog, articles,
webcasts, screencasts, online chats, and in person at developer events. Before joining Microsoft, he worked for a
large consultancy, and before that in an R&D department. In addition to significant industry experience, he holds
a BSc in Computing for Business, an MSc with distinction in Object-Oriented Software Technology, and Microsoft
certifications, and he has been working with the Microsoft .NET Framework since the first public beta in 2000.
Daniel gained the Most Valuable Professional (MVP) award in .NET Compact Framework development for his
community contributions in 2004 and 2005, and you can find his active blog at www.danielmoth.com/Blog.

In his spare time, he loves to travel the world-be it on city breaks, lazing on the beach, or scuba diving the
oceans.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Peter Foot

Peter Foot is the founder of In The Hand Ltd, a company providing development and consulting services for
mobile devices. In The Hand also produces software components for the Microsoft .NET Compact Framework to
assist other developers, from hobbyists to small and medium enterprises. Prior to working with Pocket PCs, Peter
led a test team for a major U.K. mobile Internet portal and the United Kingdom's first consumer General Packet
Radio Service (GPRS) service. Peter holds a BSc in Computer Science.

Peter has been awarded Most Valuable Professional (MVP) by Microsoft each year since 2003 for his community
contributions. Peter established the 32feet.NET shared-source community project bringing Bluetooth and IrDA
technologies into easy reach of .NET developers. Peter has also been an active contributor to other shared-source
initiatives for mobile and embedded developers. Peter is an active blogger at www.peterfoot.net where he posts
on a range of mobile development issues and has had developer articles published on the Microsoft MSDN Web
site.

Away from the keyboard, Peter enjoys traveling to new places with his digital camera. He also enjoys listening to
a wide variety of music.

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Additional Resources for C# Developers

Published and Forthcoming Titles from Microsoft Press

Microsoft® Visual C#® 2005 Express Edition: Build a Program Now!
Patrice Pelland • ISBN 0-7356-2229-9

In this lively, eye-opening, and hands-on book, all you need is a computer and the desire to learn how to
program with Visual C# 2005 Express Edition. Featuring a full working edition of the software, this fun and
highly visual guide walks you through a complete programming project—a desktop weather-reporting

application—from start to finish. You'll get an unintimidating introduction to the Microsoft Visual Studio®

development environment and learn how to put the lightweight, easy-to-use tools in Visual C# Express to work
right away—creating, compiling, testing, and delivering your first, ready-to-use program. You'll get expert tips,
coaching, and visual examples at each step of the way, along with pointers to additional learning resources.

Microsoft Visual C# 2005 Step by Step
John Sharp • ISBN 0-7356-2129-2

Visual C#, a feature of Visual Studio 2005, is a modern programming language designed to deliver a productive
environment for creating business frameworks and reusable object-oriented components. Now you can teach

yourself essential techniques with Visual C#—and start building components and Microsoft Windows®—based
applications—one step at a time. With Step by Step, you work at your own pace through hands-on, learn-
by-doing exercises. Whether you're a beginning programmer or new to this particular language, you'll learn how,
when, and why to use specific features of Visual C# 2005. Each chapter puts you to work, building your
knowledge of core capabilities and guiding you as you create your first C#-based applications for Windows, data
management, and the Web.

Programming Microsoft Visual C# 2005 Framework Reference
Francesco Balena • ISBN 0-7356-2182-9

Complementing Programming Microsoft Visual C# 2005 Core Reference, this book covers a wide range of
additional topics and information critical to Visual C# developers, including Windows Forms, working with
Microsoft ADO.NET 2.0 and Microsoft ASP.NET 2.0, Web services, security, remoting, and much more. Packed
with sample code and real-world examples, this book will help developers move from understanding to mastery.

Programming Microsoft Visual C# 2005 Core Reference
Donis Marshall • ISBN 0-7356-2181-0

Get the in-depth reference and pragmatic, real-world insights you need to exploit the enhanced language
features and core capabilities in Visual C# 2005. Programming expert Donis Marshall deftly builds your
proficiency with classes, structs, and other fundamentals, and advances your expertise with more advanced
topics such as debugging, threading, and memory management. Combining incisive reference with hands-on
coding examples and best practices, this Core Reference focuses on mastering the C# skills you need to build
innovative solutions for smart clients and the Web.

CLR via C#, Second Edition
Jeffrey Richter • ISBN 0-7356-2163-2

In this new edition of Jeffrey Richter's popular book, you get focused, pragmatic guidance on how to exploit the
common language runtime (CLR) functionality in Microsoft .NET Framework 2.0 for applications of all types—from

Web Forms, Windows Forms, and Web services to solutions for Microsoft SQL Server™, Microsoft code names

"Avalon" and "Indigo," consoles, Microsoft Windows NT® Service, and more. Targeted to advanced developers
and software designers, this book takes you under the covers of .NET for an in-depth understanding of its
structure, functions, and operational components, demonstrating the most practical ways to apply this
knowledge to your own development efforts. You'll master fundamental design tenets for .NET and get hands-on
insights for creating high-performance applications more easily and efficiently. The book features extensive code
examples in Visual C# 2005.

Programming Microsoft Windows Forms
Charles Petzold • ISBN 0-7356-2153-5

CLR via C++
Jeffrey Richter with Stanley B. Lippman
ISBN 0-7356-2248-5

Programming Microsoft Web Forms
Douglas J. Reilly • ISBN 0-7356-2179-9

Debugging, Tuning, and Testing Microsoft .NET 2.0 Applications
John Robbins • ISBN 0-7356-2202-7

For more information about Microsoft Press® books and other learning products, visit:
www.microsoft.com/books and www.microsoft.com/learning

Microsoft Press products are available worldwide wherever quality computer books are sold. For more information,
contact your book or computer retailer, software reseller, or local Microsoft Sales Office, or visit our Web site at
www.microsoft.com/mspress. To locate your nearest source for Microsoft Press products, or to order directly,
call 1-800-MSPRESS in the United States. (In Canada, call 1-800-268-2222.)

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Additional SQL Server Resources for Developers

Published and Forthcoming Titles from Microsoft Press

Microsoft® SQL Server™ 2005 Express Edition Step by Step
Jackie Goldstein • ISBN 0-7356-2184-5

Teach yourself how to get database projects up and running quickly with SQL Server Express Edition—a free,
easy-to-use database product that is based on SQL Server 2005 technology. It's designed for building simple,
dynamic applications, with all the rich functionality of the SQL Server database engine and using the same data
access APIs, such as Microsoft ADO.NET, SQL Native Client, and T-SQL. Whether you're new to database
programming or new to SQL Server, you'll learn how, when, and why to use specific features of this simple but
powerful database development environment. Each chapter puts you to work, building your knowledge of core
capabilities and guiding you as you create actual components and working applications.

Microsoft SQL Server 2005 Programming Step by Step
Fernando Guerrero • ISBN 0-7356-2207-8

SQL Server 2005 is Microsoft's next-generation data management and analysis solution that delivers enhanced
scalability, availability, and security features to enterprise data and analytical applications while making them
easier to create, deploy, and manage. Now you can teach yourself how to design, build, test, deploy, and
maintain SQL Server databases—one step at a time. Instead of merely focusing on describing new features, this
book shows new database programmers and administrators how to use specific features within typical business
scenarios. Each chapter provides a highly practical learning experience that demonstrates how to build database
solutions to solve common business problems.

Microsoft SQL Server 2005 Analysis Services Step by Step
Hitachi Consulting Services • ISBN 0-7356-2199-3

One of the key features of SQL Server 2005 is SQL Server Analysis Services—Microsoft's customizable analysis
solution for business data modeling and interpretation. Just compare SQL Server Analysis Services to its
competition to understand the great value of its enhanced features. One of the keys to harnessing the full
functionality of SQL Server will be leveraging Analysis Services for the powerful tool that it is—including creating
a cube, and deploying, customizing, and extending the basic calculations. This step-by-step tutorial discusses
how to get started, how to build scalable analytical applications, and how to use and administer advanced
features. Interactivity (enhanced in SQL Server 2005), data translation, and security are also covered in detail.

Microsoft SQL Server 2005 Reporting Services Step by Step
Hitachi Consulting Services • ISBN 0-7356-2250-7

SQL Server Reporting Services (SRS) is Microsoft's customizable reporting solution for business data analysis. It
is one of the key value features of SQL Server 2005: functionality more advanced and much less expensive than
its competition. SRS is powerful, so an understanding of how to architect a report, as well as how to install and
program SRS, is key to harnessing the full functionality of SQL Server. This procedural tutorial shows how to use
the Report Project Wizard, how to think about and access data, and how to build queries. It also walks through
the creation of charts and visual layouts for maximum visual understanding of data analysis. Interactivity
(enhanced in SQL Server 2005) and security are also covered in detail.

Programming Microsoft SQL Server 2005
Andrew J. Brust, Stephen Forte, and William H. Zack
ISBN 0-7356-1923-9

This thorough, hands-on reference for developers and database administrators teaches the basics of
programming custom applications with SQL Server 2005. You will learn the fundamentals of creating database
applications—including coverage of T-SQL, Microsoft .NET Framework, and Microsoft ADO.NET. In addition to
practical guidance on database architecture and design, application development, and reporting and data
analysis, this essential reference guide covers performance, tuning, and availability of SQL Server 2005.

Inside Microsoft SQL Server 2005: The Storage Engine
Kalen Delaney • ISBN 0-7356-2105-5

Inside Microsoft SQL Server 2005: T-SQL Programming
Itzik Ben-Gan • ISBN 0-7356-2197-7

Inside Microsoft SQL Server 2005: Query Processing and Optimization
Kalen Delaney • ISBN 0-7356-2196-9

Programming Microsoft ADO.NET 2.0 Core Reference
David Sceppa • ISBN 0-7356-2206-X

For more information about Microsoft Press® books and other learning products, visit:
www.microsoft.com/mspress and www.microsoft.com/learning

Microsoft Press products are available worldwide wherever quality computer books are sold. For more information,
contact your book or computer retailer, software reseller, or local Microsoft Sales Office, or visit our Web site at
www.microsoft.com/mspress. To locate your nearest source for Microsoft Press products, or to order directly,
call 1-800-MSPRESS in the United States. (In Canada, call 1-800-268-2222.)

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Additional Resources for Web Developers

Published and Forthcoming Titles from Microsoft Press

Microsoft® Visual Web Developer™ 2005 Express Edition: Build a Web Site Now!
Jim Buyens • ISBN 0-7356-2212-4

With this lively, eye-opening, and hands-on book, all you need is a computer and the desire to learn how to
create Web pages now using Visual Web Developer Express Edition! Featuring a full working edition of the
software, this fun and highly visual guide walks you through a complete Web page project from set-up to launch.

You'll get an introduction to the Microsoft Visual Studio® environment and learn how to put the lightweight,
easy-to-use tools in Visual Web Developer Express to work right away—building your first, dynamic Web pages
with Microsoft ASP.NET 2.0. You'll get expert tips, coaching, and visual examples at each step of the way, along
with pointers to additional learning resources.

Microsoft ASP.NET 2.0 Programming Step by Step
George Shepherd • ISBN 0-7356-2201-9

With dramatic improvements in performance, productivity, and security features, Visual Studio 2005 and
ASP.NET 2.0 deliver a simplified, high-performance, and powerful Web development experience. ASP.NET 2.0
features a new set of controls and infrastructure that simplify Web-based data access and include functionality
that facilitates code reuse, visual consistency, and aesthetic appeal. Now you can teach yourself the essentials of
working with ASP.NET 2.0 in the Visual Studio environment—one step at a time. With Step by Step, you work at
your own pace through hands-on, learn-by-doing exercises. Whether you're a beginning programmer or new to
this version of the technology, you'll understand the core capabilities and fundamental techniques for ASP.NET
2.0. Each chapter puts you to work, showing you how, when, and why to use specific features of the ASP.NET 2.0
rapid application development environment and guiding you as you create actual components and working
applications for the Web, including advanced features such as personalization.

Programming Microsoft ASP.NET 2.0 Core Reference
Dino Esposito • ISBN 0-7356-2176-4

Delve into the core topics for ASP.NET 2.0 programming, mastering the essential skills and capabilities needed to
build high-performance Web applications successfully. Well-known ASP.NET author Dino Esposito deftly builds
your expertise with Web forms, Visual Studio, core controls, master pages, data access, data binding, state
management, security services, and other must-know topics—combining definitive reference with practical,
hands-on programming instruction. Packed with expert guidance and pragmatic examples, this Core Reference
delivers the key resources that you need to develop professional-level Web programming skills.

Programming Microsoft ASP.NET 2.0 Applications: Advanced Topics
Dino Esposito • ISBN 0-7356-2177-2

Master advanced topics in ASP.NET 2.0 programming—gaining the essential insights and in-depth understanding
that you need to build sophisticated, highly functional Web applications successfully. Topics include Web forms,
Visual Studio 2005, core controls, master pages, data access, data binding, state management, and security
considerations. Developers often discover that the more they use ASP.NET, the more they need to know. With
expert guidance from ASP.NET authority Dino Esposito, you get the in-depth, comprehensive information that
leads to full mastery of the technology.

Programming Microsoft Windows® Forms
Charles Petzold • ISBN 0-7356-2153-5

Programming Microsoft Web Forms
Douglas J. Reilly • ISBN 0-7356-2179-9

CLR via C++
Jeffrey Richter with Stanley B. Lippman
ISBN 0-7356-2248-5

Debugging, Tuning, and Testing Microsoft .NET 2.0 Applications
John Robbins • ISBN 0-7356-2202-7

CLR via C#, Second Edition
Jeffrey Richter • ISBN 0-7356-2163-2

For more information about Microsoft Press® books and other learning products, visit:
www.microsoft.com/books and www.microsoft.com/learning

Microsoft Press products are available worldwide wherever quality computer books are sold. For more information,
contact your book or computer retailer, software reseller, or local Microsoft Sales Office, or visit our Web site at
www.microsoft.com/mspress. To locate your nearest source for Microsoft Press products, or to order directly,
call 1-800-MSPRESS in the United States. (In Canada, call 1-800-268-2222.)

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Additional Resources for Developers

Published and Forthcoming Titles on Microsoft® Visual Studio® 2005 and SQL Server™ 2005

Visual Basic 2005

Microsoft Visual Basic® 2005 Express Edition: Build a Program Now!
Patrice Pelland
978-0-7356-2213-5

Microsoft Visual Basic 2005 Step by Step
Michael Halvorson

978-0-7356-2131-2

Programming Microsoft Visual Basic 2005: The Language
Francesco Balena

978-0-7356-2183-1

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Visual C# 2005

Microsoft Visual C#® 2005 Express Edition: Build a Program Now!
Patrice Pelland
978-0-7356-2229-6

Microsoft Visual C# 2005 Step by Step
John Sharp
978-0-7356-2129-9

Programming Microsoft Visual C# 2005: The Language
Donis Marshall

978-0-7356-2181-7

Programming Microsoft Visual C# 2005: The Base Class Library
Francesco Balena

978-0-7356-2308-8

CLR via C#, Second Edition
Jeffrey Richter
978-0-7356-2163-3

Microsoft .NET Framework 2.0 Poster Pack
Jeffrey Richter
978-0-7356-2317-0

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Web Development

Microsoft Visual Web Developer™ 2005 Express Edition: Build a Web Site Now!
Jim Buyens
978-0-7356-2212-8

Microsoft ASP.NET 2.0 Step by Step
George Shepherd
978-0-7356-2201-2

Programming Microsoft ASP.NET 2.0 Core Reference
Dino Esposito
978-0-7356-2176-3

Programming Microsoft ASP.NET 2.0 Applications Advanced Topics
Dino Esposito
978-0-7356-2177-0

Developing More-Secure Microsoft ASP.NET 2.0 Applications
Dominick Baier
978-0-7356-2331-6

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Data Access

Microsoft ADO.NET 2.0 Step by Step
Rebecca M. Riordan
978-0-7356-2164-0

Programming Microsoft ADO.NET 2.0 Core Reference
David Sceppa
978-0-7356-2206-7

Programming Microsoft ADO.NET 2.0 Applications Advanced Topics
Glenn Johnson
978-0-7356-2141-1

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

SQL Server 2005

Microsoft SQL Server 2005 Database Essentials Step by Step
Solid Quality Learning
978-0-7356-2207-4

Microsoft SQL Server 2005 Applied Techniques Step by Step
Solid Quality Learning
978-0-7356-2316-3

Microsoft SQL Server 2005 Analysis Services Step by Step
Reed Jacobson, Stacia Misner, and Hitachi Consulting
978-0-7356-2199-2

Microsoft SQL Server 2005 Reporting Services Step by Step
Stacia Misner Hitachi Consulting
978-0-7356-2250-0

Microsoft SQL Server 2005 Integration Services Step by Step
Paul Turley Hitachi Consulting
978-0-7356-2405-4

Programming Microsoft SQL Server 2005
Andrew J. Brust Stephen Forte
978-0-7356-1923-4

Inside Microsoft SQL Server 2005: The Storage Engine
Kalen Delaney
978-0-7356-2105-3

Inside Microsoft SQL Server 2005: T-SQL Programming
Itzik Ben-Gan, Dejan Sarka, and Roger Wolter
978-0-7356-2197-8

Inside Microsoft SQL Server 2005: T-SQL Querying
Itzik Ben-Gan, Lubor Kollar, and Dejan Sarka
978-0-7356-2313-2

Inside Microsoft SQL Server 2005: Query Tuning and Optimization
Kalen Delaney, et al.
978-0-7356-2196-1

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

Other Developer Topics

Debugging Microsoft .NET 2.0 Applications
John Robbins
978-0-7356-2202-9

Hunting Security Bugs
Tom Gallagher, Bryan Jeffries, and Lawrence Landauer
978-0-7356-2187-9

Software Estimation: Demystifying the Black Art
Steve McConnell
978-0-7356-0535-0

The Security Development Lifecycle
Michael Howard Steve Lipner
978-0-7356-2214-2

Writing Secure Code, Second Edition
Michael Howard David LeBlanc
978-0-7356-1722-3

Code Complete, Second Edition
Steve McConnell
978-0-7356-1967-8

Software Requirements, Second Edition
Karl E. Wiegers
978-0-7356-1879-4

More About Software Requirements: Thorny Issues and Practical Advice
Karl E. Wiegers
978-0-7356-2267-8

microsoft.com/mspress

User name: Vysoke uceni technicki (VUT) brno
Book: Microsoft® Mobile Development Handbook

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other
use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates
these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

More Great Developer Resources

Published and Forthcoming Titles from Microsoft Press

Developer Step by Step

Hands-on

tutorial

covering

fundamental

techniques

and features

Practice files

on CD

Prepares and

informs

new-to-topic

programmers

Microsoft®

Visual Basic® 2005
Step by Step
Michael
Halvorson
978-0-7356-2131-2

Microsoft

Visual C#® 2005
Step by Step
John Sharp
978-0-7356-2129-9

Microsoft
ADO.NET 2.0
Step by Step
Rebecca M. Riordan
978-0-7356-2164-0

Microsoft
ASP.NET 2.0
Step by Step
George Shepherd
978-0-7356-2201-2

